Convolution Examples

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(\tau) h(t-\tau) d \tau \tag{1}
\end{equation*}
$$

$1 \quad$ rect $*$ rect

$$
\begin{equation*}
\operatorname{rect}(t / a) * \operatorname{rect}(t / b) \tag{2}
\end{equation*}
$$

where $a<b$.
Define $t_{\text {max }}=(a+b) / 2$ and $t_{\text {min }}=(b-a) / 2$.
Region 1 extends from $t=-t_{\text {max }}$ to $t=-t_{\text {min }}$ (partial overlap).

$$
\begin{equation*}
g(x)=\int_{-a / 2}^{t+b / 2} d \tau=t+b / 2+a / 2=t+t_{\max } \tag{3}
\end{equation*}
$$

Region 2 extends from $t \geq-t_{\min }$ to $t \leq t_{\min }$ (full overlap)

$$
\begin{equation*}
g(x)=a \tag{4}
\end{equation*}
$$

Region 3 extends from $t=t_{\text {min }}$ to $t=t_{\text {max }}$ (partial overlap).

$$
\begin{equation*}
g(x)=\int_{t-b / 2}^{a / 2} d \tau=a / 2-(t-b / 2)=t_{\max }-t \tag{5}
\end{equation*}
$$

$2 \quad e^{-a t} u(t) * u(t)$

$$
\begin{equation*}
\int_{0}^{t} e^{-a \tau} d \tau=\frac{1-e^{-a t}}{a} \tag{6}
\end{equation*}
$$

$3 \quad e^{-a t} u(t) * e^{-b t} u(t)$

$$
\begin{equation*}
\int_{0}^{t} e^{-a \tau} e^{b \tau-b t} d \tau=e^{-b t} \int_{0}^{t} e^{-(a-b) \tau} d \tau=\frac{e^{-b t}-e^{-a t}}{a-b} \tag{7}
\end{equation*}
$$

If $a=b$, we can simplify the result to $t e^{-a t}$ (let $a=b$ inside the second integral).

If $b=0$, the results simplify to the previous section.

