Convolution Examples

$$\int_{-\infty}^{\infty} f(\tau)h(t-\tau)d\tau \tag{1}$$

1 rect * rect

$$\operatorname{rect}(t/a) * \operatorname{rect}(t/b)$$
 (2)

where a < b.

Define $t_{\max} = (a+b)/2$ and $t_{\min} = (b-a)/2$. Region 1 extends from $t = -t_{\max}$ to $t = -t_{\min}$ (partial overlap).

$$g(x) = \int_{-a/2}^{t+b/2} d\tau = t + b/2 + a/2 = t + t_{\text{max}}.$$
 (3)

Region 2 extends from $t \geq -t_{\min}$ to $t \leq t_{\min}$ (full overlap)

$$g(x) = a \tag{4}$$

Region 3 extends from $t = t_{\min}$ to $t = t_{\max}$ (partial overlap).

$$g(x) = \int_{t-b/2}^{a/2} d\tau = a/2 - (t-b/2) = t_{\max} - t$$
(5)

2 $e^{-at}u(t) * u(t)$

$$\int_0^t e^{-a\tau} d\tau = \frac{1 - e^{-at}}{a} \tag{6}$$

3 $e^{-at}u(t) * e^{-bt}u(t)$

$$\int_{0}^{t} e^{-a\tau} e^{b\tau - bt} d\tau = e^{-bt} \int_{0}^{t} e^{-(a-b)\tau} d\tau = \frac{e^{-bt} - e^{-at}}{a-b}$$
(7)

If a = b, we can simplify the result to te^{-at} (let a = b inside the second integral).

If b = 0, the results simplify to the previous section.