
Stamp Applications no. 12 (February ’96):

Model Rocket Project Aims High
With BS1-IC Instrumentation

Measuring Rocket Acceleration And Velocity
And Truth and Consequences with IF/THEN,
by Scott Edwards

MODEL rockets and Stamp microcontrollers
appeal to educators for many of the same
reasons. Both offer:

• Hands-on experience with high techology.
• A starting point for discussions of science

and math fundamentals.
• An inexpensive, but thoroughly educational

class project.
• Impressive, tangible accomplishments that

wow school administrators and parents.
• Enough fun and excitement to turn slack-

jawed Nintendo burnouts into enthusistic
students!

You don’t have to take my word for it. This
month, I’m turning the first part of the column
over to Dave Bodnar, Technology Coordinator
for the Mount Lebanon School District of
Pittsburgh, Pennsylvania. Last summer, Dave
combined Stamp electronics with model-rocket
pyrotechnics to create a couple of high-flying
Stamp applications. Here’s a description in
Dave’s own words:

Enclosed you will find the prototypes of the
rocket sensors that I put together this summer.
One senses the rocket’s speed by measuring the
speed of a propeller on the nose cone. The other
measures acceleration.

The speed device uses an infrared photo
transistor/emitter pair to detect the spinning of
the propeller. A split wheel chops the light that

normally goes between the emitter and detector.
The two LEDs and buzzer are used to let the
launch crew know when it is time to launch the
rocket. The Stamp’s internal memory is used to
store the data that is collected. I have enclosed a
disk with the results of the first few flights. Note
that the power source for the speed sensor is a set
of watch batteries in the base of the nose cone.

The system is operable and can be brought to
life by connecting the sets of red/black wires.
While making up the drawing of the circuit, I
noticed that I had mislabeled the RESET and +5
pins and attached things incorrectly. Fortunately
the RESET pin seems to supply enough current
to run the circuit and pressing the reset button in
the nose cone shorts the +5 and Ground to do a
type of reset!

The acceleration sensor works on the same
principle as the first device except that it senses
the brightness of the light that falls on a CdS cell
in the top of the hypodermic syringe. The bulb
moves up and down the syringe based on the
acceleration of the rocket. The syringe is
normally covered with black tape to keep out
light. The small switch on the top of the gold
cells is the power switch. The cells are 2/3 of a 9-
volt battery. They serve as a power source and a
weight for the sensor.

The data is collected by connecting a small PC
(I used an HP 95LX) via the serial port. The data
is continuously output after the flight.

Stamp Applications no. 12, February 1996

2

power to
BS1-IC

CdS
photocell

ON switch

1.5V cells
removed
from 9V
battery

compression
spring

plastic
syringe body
(covered with
opaque tape
in use)

tiny light bulb
(wires routed
up through
syringe
plunger to
batteries)

photocell

BS1-IC and
ready-to-launch
LED indicators

in nosecone

“accel” data to BS1-IC
via Pot instruction

IR LED,
connected to
power supply

Free-spinning
propeller

e c

+5V
IR phototransistor
(NPN) 470

BS1-IC
pin 0

470

pin 2

pin 3

Ready-to-
launch
LEDs

pin 5
buzzer

pin 7
serial data out

Notes:
• All pin numbers refer to their
PBASIC names.
• Power supplied by button cells in
base of nose cone.
• The acceleration probe shares
the same basic circuitry, but uses a
different sensor and power source,
as shown at right.

Figure 1. Diagrams of the velocity and acceleration probes.

Figure 1 shows the basic construction of Mr.
Bodnar’s instrumented model rockets, while
listings 1 and 2 are the programs that run them.

BASIC for Beginners. Last month, I equated a
BASIC program to a to-do list. The computer
starts at the top of the program and performs
the instructions in order of appearance.

However, the real power of programming is
the ability to make decisions. The program is
still a list of actions to do, but the order in which
they’re performed (and whether some of them
are performed at all) can be based on conditions
that exist at the time the program is run.

In BASIC, you describe decisions and their
consequences with the IF/THEN instruction.

Stamp Applications no. 12, February 1996

3

The syntax of this instruction—the correct way
to use and express this instruction in your
programs—is:

IF condition THEN label

In this syntax, condition is a comparison that
can be true or false; for example 2 = 10 (read as
two is equal to ten) is an example of a false
condition. The comparison operators, also called
relational operators, available in PBASIC are:

= equal <> not equal
> greater than < less than
>= greater or equal <= less or equal

If you have trouble remembering which way the
< should point, just use this mnemonic: the
symbol is the mouth of a greedy alligator who
always snaps up the larger of the two meals
offered. So x > y reads x is greater than y.

When PBASIC processes an IF/THEN
instruction, it determines whether the condition
is true or false. If it’s true, the next instruction
the program executes will be the one specified
by the label following THEN. If the condition is
false, PBASIC will just go on to the next
instruction in the program in normal to-do list
fashion.

Let’s put this information to work in a simple
application. Suppose we’re monitoring a burglar
alarm system that’s wired so that a 0 appears on
pin1 when all doors and windows are shut, and
a 1 when any are opened. When the system is
turned on, opening a door or window should
trigger the alarm. Here’s a straightforward way
to express that in PBASIC:

Monitor:
 IF pin1 = 1 THEN Alarm
GOTO Monitor

Alarm:
 SOUND 7,(90,100,120,100)
GOTO Alarm

In the section labeled Monitor, if pin1 is 0,
meaning all is secure, the program just goes
back to Monitor and checks the pin again.
However, if pin1 is 1, meaning a door or window
has been opened, the program goes to the
instructions that start with the label Alarm.

Here PBASIC generates a two-tone sound
through pin7 to attract attention. (Don’t worry
about understanding the specifics of instructions
like Sound—they’re just fill-in-the blank forms
for performing a simple action.)

Before I go on, I want to explain what labels
like Monitor and Alarm are and how they work.
You can see from the example that decisions and
repeated actions depend on telling PBASIC to go
to a specific point in the list of instructions that
makes up a program. In old versions of BASIC
each line began with a number, so you specified
the “where” of a GOTO or IF/THEN instruction
with the number of the destination line.

Line numbers don’t say much about the
“what” or “why” of these destinations, so modern
BASICs like PBASIC use labels instead. A label
is just a word that you, the programmer, have
picked to mark a place in the program. To let
PBASIC know that it’s a label, you end the
chosen word with a colon (:). There are other
rules about labels, but we’ll leave it at that for
now.

I want to leave you with a further thought
about IF/THEN: Suppose we wanted another
condition that could trigger the alarm—say a
panic button on pin2. It would normally read 0,
but if you heard a strange noise in the bushes,
you could push the button to put a 1 on pin2 to
trigger the alarm. In other words, you want the
alarm to go off if there’s a door/window open OR
the panic button is pressed. A small change to
the IF/THEN instruction does the job:

Monitor:
 IF pin1 = 1 OR pin2 = 1 THEN Alarm
GOTO Monitor

Looky there: the idea of OR is expressed the
same in PBASIC as in plain English! From this
simple foundation, we’ll examine the whole
system of truth and consequences called Boolean
logic in the next installment.

Sources

For more information on the BASIC Stamp,
contact Parallax Inc., 3805 Atherton Road no.
102, Rocklin, CA 95765; phone 916-624-8333;
fax 916-624-8003; BBS 916-624-7101; e-mail
info@parallaxinc.com.

Stamp Applications no. 12, February 1996

4

Send questions, suggestions, or requests for
future Stamp Applications to:
Scott Edwards Electronics, 964 Cactus Wren
Lane, Sierra Vista, AZ 85635; phone 520-459-
4802; fax 520-459-0623; e-mail (Compuserve) at
72037,2612; on the Internet 72037.2612 @
compuserve.com. Scott offers Stamp-related
products and kits, including:

The Counterfeit controller, a kit alternative to
the BASIC Stamp, is $29. Double- and quad-
speed options are $2 and $4, respectively. The
Counterfeit Development System, required to

program Counterfeits is $69 and includes a 150-
page manual, downloading cable kit, Parallax
software, and one Counterfeit controller kit.

The LCD Serial Backpack is a daughterboard
that attaches to LCDs, converting their fussy
parallel interface to Stamp-compatible serial at
2400 or 9600 baud. The assembled Backpack is
$29; with 16x1 LCD, $40; 16x2 LCD, $45; or
backlit 20x4 LCD, $89.

Visa, Mastercard, and American Express
accepted for phone/fax orders. Personal checks
and money orders are welcome for mail orders.

' Listing 1, Model Rocket Velocity Probe, by Dave Bodnar
REM Rocket telemetry program MINIMUM memory implementation
REM for use with PROPELLER/SPEED sensor only
REM uses internal STAMP memory for data storage
' RKT_SPD1.BAS (was RKT_MIN5.BAS) D. Bodnar 7-6-95 6:53

Symbol Prop = 0 'pin 0 for propellor
Symbol LED1 = 2 'pin to show ready for launch
Symbol LED2 = 3 'pin (another) to show ready for launch
Symbol Buzz = 5 'pin for Piezo buzzer
Symbol Ser_out = 7 'pin for serial output of data (orange wire)
Symbol Delay = 8000 ' better at about 8000 - 1000 for testing only
Symbol STOPmem=2

realstart:
read 255,b11 'memory end location for writing
'debug b11,cr
b11=b11-1
b10=b11 'make copy for later

LOW buzz
high LED2:high LED1 'Both on FIRST
pause Delay 'RED only on (LED1)
HIGH buzz
low LED2 'GREEN only on (LED2)
pause Delay 'LAUNCH ready
LOW buzz
high LED2:low LED1
pause Delay
Low LED2
HIGH buzz

The 16x1 LCD is no longer available, having been replaced with a 16x2. Visit www.seetron.com for current info.

New contact information:

Scott Edwards Electronics, Inc.
2700 E. Fry Blvd. Suite A4
Sierra Vista, AZ 85635
ph: 520-459-4802; fax 520-459-0623

web: www.seetron.com
e-mail: scott@seetron.com

Stamp Applications no. 12, February 1996

5

waitforlaunch: 'stay here till LAUNCH detected
 high LED1 'flash RED while waiting
 pulsin prop,1,w2
 low LED1
if w2=0 then waitforlaunch:
High LED2
LOW buzz
start:
 gosub GETnWRITEit:
if b11 >STOPmem then start: 'loop till RAM full
Low LED2
HIGH buzz
doneloop:
 b9=b10

'debug "start of end",cr
LOW buzz
 serout ser_out,n2400,("START",#b9,13,10) 'send "Start" & amount of RAM
 pause 2000
loop:
 HIGH buzz
 read b9, b7:b9=b9-1:read b9,b8
' debug #b9,"+1 hi=",#b7," lo=",#b8
 w2=b7*256 + b8
' debug " ",#w2,cr
 LOW buzz
 serout ser_out, n2400,(#w2,13,10)
' high LED1:Pause 20:low LED1:pause 20
 b9=b9-1
 if b9 > STOPmem then loop
 pause 5000
goto doneloop:

GETnWRITEit:
 HIGH buzz:PAUSE 40
 pulsin prop, 1,w2 'take reading
 b7=w2/256
 w1= b7*256
 b8=w2-w1
' debug #b11,"hi=",#b7," lo=",#b8, " 16bit=",#w2,cr
 Write b11,b7:b11=b11-1:write b11,b8:b11=b11-1
 LOW buzz:PAUSE 40
return

Stamp Applications no. 12, February 1996

6

' Listing 2, Model Rocket Acceleration Probe, by Dave Bodnar
REM Rocket telemetry program MINIMUM memory implementation
REM uses internal STAMP memory for data storage
' RKT_ACC1.BAS (was RKT_MIN5.BAS) D. Bodnar 7-6-95 6:27

Symbol Accel = 1 'pin 1 for acceleration
Symbol LED1 = 2 'pin to show ready for launch
Symbol LED2 = 3 'pin (another) to show ready for launch
Symbol Ser_out = 7 'pin for serial output of data (orange wire)
Symbol Delay = 8000 ' better at about 8000 - 1000 for testing only

realstart:
read 255,b11 'memory end location for writing
b10=b11-1 'make copy for later

high LED2:high LED1 'Both on FIRST
pause Delay 'RED only on (LED1)
low LED2 'GREEN only on (LED2)
pause Delay 'LAUNCH ready
high LED2:low LED1
pause Delay
Low LED2

 gosub GETnWRITEit:
 b6=b2-3

waitforlaunch: 'stay here till LAUNCH detected
 high LED1 'flash RED while waiting
 pot accel,170,b2
 low LED1
if b2>b6 then waitforlaunch:
High LED2
start:
 gosub GETnWRITEit:
low LED2:pause 20:high LED2:pause 5
if b11 >1 then start: 'loop till RAM full
Low LED2

doneloop:
 b9=b10
 serout ser_out,n2400,("S",#b9,13,10) 'send "Start" & amount of RAM
 pause 2000

Stamp Applications no. 12, February 1996

7

loop:
 read b9, b2:
 serout ser_out, n2400,(#b2,13,10)
 high LED1:Pause 20:low LED1:pause 20
 b9=b9-1
 if b9 > 1 then loop
 pause 5000
goto doneloop:

GETnWRITEit:
 pot accel,170,b2 'take reading
 Write b11,b2:b11=b11-1
return

