20

1.11.7

Your UNIX: The Ultimate Guide

variables, that establish it as a powerful programming language in its own right. These
features are used to design shell scripts—programs that run UNIX commands in a batch.

Many of the system’s functions can be controlled and automated by using these
shell scripts. If you intend taking up system administration as a career, then you’ll have
to know the shell’s programming features very well. Proficient UNIX programmers
seldom refer to any other language (except per1) for text manipulation problems. Shell
programming is taken up in Chapter 13.

Documentation

UNIX documentation is no longer the sore point it once was. Even though it’s sometimes
uneven, usually the treatment is quite lucid. The principal online help facility available
is the man command, which remains the most important reference for commands and
their configuration files. Today there’s no feature of UNIX on which a separate textbook
is not available. UNIX documentation and the man facility are discussed in Chapter 2.

Apart from the online documentation, there’s a vast ocean of UNIX resources
available on the Internet. There are several newsgroups on UNIX where you can post
your queries in case you are stranded with a problem. The FAQ (Frequently Asked
Questions)—a document that addresses common problems—is also widely available on
the Net. Then there are numerous articles published in magazines and journals and lecture
notes made available by universities on their Web sites.

With the goal of building a comfortable relationship with the machine, Thomson
and Ritchie designed a system for their own use rather than for others. They could
afford to do this because UNIX wasn’t initially developed as a commercial product, and
the project didn’t have any predefined objective. They acknowledge this fact too: “We
have not been faced with the need to satisfy someone else’s requirements, and for this
freedom we are grateful.”

SUMMARY

A computer needs an operating system (OS) to allocate memory, schedule programs,
and control devices. The UNIX system also provides a host of applications for the use
of programmers and users.

Multiprogramming systems like UNIX allow multiple programs to reside in
memory. Even though a program may run for the duration of the time slice allocated for
it, it may prematurely leave the CPU during a blocking operation (like reading a file)
that keeps the CPU idle.

You enter a UNIX system by entering a user-id and a password. You can terminate
a session by using the exit or legout command or pressing [Ctrl-d].

UNIX commands are generally in lowercase. date displays the system date and
time. who displays the list of users logged on to the system. ps lists all processes running
at a terminal. It always shows the shell process running.

You can display a file with cat, copy it with cp, rename it with mv, and remove it
with rm,

mkdir creates a directory, pwd displays the pathname of the current directory, and
cd changes the current directory. rmdir removes an empty directory.

Chapter 1: Introducing Unix 21

' UNIX was developed at AT&T Bell Laboratories by Ken Thompson and Dennis
thchie. It was finally written in C. Notable work was also done at Berkeley. AT&T
mtr'oduced System V Release 4 (SVR4) to merge their own version, Berkeley, and other
variants.

Linux is a UNIX implementation that is constantly growing with contributions
from the Free Software Foundation (formerly, GNU).

Modifications to the system made by vendors led to both enhancement and
fragmentation of UNIX, Two merged standards, POSIX and the Single UNIX Specification,
are today used as guidance for development work on UNIX. ,

All work is shared by the kernel and shell. The kernel manages the hardware, and
the shell interacts with the user. The shell and applications communicate with the k(;rnel
using system calls, which are special routines built into the kernel.

The file and process are the two basic entities that support the UNIX system.
UNIX considers everything as a file. A process represents a program (a file) in execution.

UNIX is a multiuser and multitasking system. Several users can use the system
together, and a single user can also run multiple jobs concurrently.

UNIX uses a building-block approach in the design of some of its tools and lets
you develop complex command routines by connecting these tools.

The UNIX man command is the primary online help facility available.

SELF-TEST

1.1 The interacts with the hardware, and the

12 A program is synonymous with a process. True or false?

1.3 Every character has a number associated with it. What is it called?

1.4 Ifyousee a prompt like maithost Togin:, what do you think ma i Thost represents?

1.5 If the system echoes Login incorrect, does it mean that your user-id is incorrect?

1.6 Name the commands you used in this chapter to display (i) filenames
(ii) processes, (iii) users. ,

1.7 Run ps and note the PID of your shell. Log out and log in again, and run ps
again. What do you observe?

1.8 Create two files, fool and foo2, with the echo command, and then use cat fool
foo02. What do you observe?

1.9 Now run the command cat foo[12], and note your observations.

1.10 Enter the command echo SHELL. What mistake did you make?

111 Create a file foo containing the words he11o do11 y- Now create a directory bar,
and thenrunmv foo bar. What do you observe when yourunboth Ts and 1s bar?

1.12° Who are the principal architects of the UNIX operating system?

1.13 Why did AT&T virtually give away UNIX to the world?

1.14 Where did BSD UNIX originate? Name some features of UNIX that were first
found in BSD UNIX.

115 Which flavor of UNIX is available for free and runs on the PC?

1.16 Identify the companies associated with the following brands: (i) Solaris, (ii) AIX
(iii) Tru64 UNIX. ,

1.17 What does X/OPEN represent? Who owns the UNIX trademark today?

interacts with the user.

22

Your UNIX: The Ultimate Guide

1.18 Who are the two brains behind Linux?

1.19 What is the distinctive characteristic about the GNU General Public License?

1.20 Why is UNIX more portable than other operating systems?

1.21 Can you divide UNIX into two major schools? To which school does Sun’s
UNIX belong?

1.22 Why do UNIX tools perform simple jobs rather than complex ones?

1.23 What is the windowing system of UNIX known as?

1.24 Name some interpretive languages available on UNIX systems.

1.25 Name three notable Linux flavors.

EXERCISES

1.1 Operating systems like UNIX provide services both for programs and users. Explain.

1.2 What does a program do when it needs to read a file?

1.3 Does a program always complete its time quantum before it makes way for
another program?

1.4 Explain the significance of the terms multiprogramming, multiuser, and
multitasking.

1.5 Why are UNIX commands noninteractive, and why is their output not usually
preceded by header information?

1.6 What are system calls, and what role do they play in the system? How is C
programming so different and powerful in the UNIX environment compared to
Windows?

1.7 Two UNIX systems may use the same system calls. True or false?

1.8 Name the three commands that you would try in sequence to log yourself out of
the system. Which one of them will always work?

1.9 Run the following commands, and then invoke 1s. What do you conclude?
echo > README/Enter]
echo > readme/Enter]

1.10 Enter the following commands, and note your observations: (i) who and tty,
(ii) tput clear, (iii) id, (iv) ps and echo $$.

1.11 When you log in, a program starts executing at your terminal. What is this program
known as? Name four types of this program that are available on a system.

1.12 What is the significance of your user-id? Where in the system is the name used?

1.13 What are the two schools of UNIX that initially guided its development? Mention
the outcome of the standardization efforts that are currently in force today.

1.14 Create a directory, and change to that directory. Next, create another directory in
the new directory, and then change to that directory too. Now, run ¢d without
any arguments followed by pwd. What do you conclude?

1.15 Why is the shell called a command interpreter?

1.16 What is the one thing that is common to directories, devices, terminals, and

printers?

2.1

CHAPTER

Becoming Familiar
with UNIX Commands

major part of the job of learning UNIX is to master the essential command

set. UNIX has a vast repertoire of commands that can solve many tasks
either by working singly or in combination. In this chapter, we’ll examine the generalized
UNIX command syntax and come to understand the significance of its options and
arguments. The complete picture of command usage is available in the man pages, and
we’ll learn to look up this documentation with the man command.

We'll next try out some of the general-purpose utilities of the system. We’ll change
the password and get comfortable with email using a command-line tool. We’ll learn
about other tools that tell us the date, the users of the system, and some specifics of the
operating system. At times we need to consider situations where the output of these
commands can be processed further. Finally, we take a look at the common traps that
befall the user and how the stty command can change many keyboard settings.

Objectives

* Understand the breakup of the command line into arguments and options.
* Learn how the shell uses the PATH variable to locate commands.

* Learn how commands can be used singly or in combination.

* Use the man command to browse the UNIX documentation.

* Understand the organization of the documentation.

* Display messages with echo, and understand why printf is superior.

* Save all keystrokes and command output in a file with script.

* Understand email basics and why you need a command-line email program like mai 1x.
* Use passwd to change your own password.

* Know your machine’s name and operating system with uname.

* Find out the users of the system with who.

* Display the system date in various formats with date.

* Know what can go wrong, and use stty to change keyboard settings.

* Get introduced to the X Window system.

Command Basics

UNIX commands are generally implemented as disk files representing executable
programs. They are mainly written in C, but UNIX supports programs written in any

23

48

Tip

2.15.2

Your UNIX: The Ultimate Guide

You can have several terminal emulators (apart from several programs) on your
desktop, and you can invoke a separate application in each one of them. You can also
switch from one application to another without quitting any of them.

If you have difficulty in copy-paste operations using the technique described above, you can
use the window menu which also offers options to do the same work. Often, the keys are the
same ones used in Microsoft Windows—(Ctrl-c] for copying and [Ctrl-v] for pasting.

The File Manager
We use files all the time, copying, moving, and deleting them several times a day. Every
X implementation offers a file management program that can perform these tasks. A file
manager can also be used to view file contents and execute programs. Windows offers a
similar application—Windows Explorer. The file manager on the CDE is dtfile, which
is shown in Fig. 2.5. Linux users may use Konqueror instead. However, your system
may contain other file managers.

Using menu options, you can create and remove directories. Try creating some.
To copy or move files from one directory to another, you need to work with two windows
of the same program. Look up the menu option that splits a window. Every file is
represented by an icon, and you select it by clicking it with the mouse. You can also
select multiple files by pressing /Ctrl] and then clicking on each icon. To select all files,
use the option offered by the menus; it often is [Ctri-a]. You can now drag the files by
keeping the left mouse button pressed and drop them to their new location by releasing
the button. Files can thus be copied and moved in this way.

In Chapter 3, you’ll use the mkdir, rmdir, cp, and mv commands for file and
directory handling. You’ll see how effortlessly you can work with groups of files and

FIGURE 2.5 Two Views of the dtfile File Manager

ka.pdsit.be

Chapter 2: Becoming Familiar with UNIX Commands 49

directories using these commands. However, it's good to know the X techniques now
because that will help you appreciate the power of the UNIX command line interface
later. The limitations of the X method of doing things will soon become apparent.

SUMMARY

UNIX commands are case-sensitive but are generally in lowercase. They need not have
any specific extensions. Commands for general use are located in the directories /bin
and /usr/bin. The shell variable, PATH, specifies the search list of directories for locating
commands.

The shell treats a command either as external when it exists on disk or internal
when it is built into the shell. Commands like man and mai1x also have their own internal
commands.

The command line comprises the command, and its options and arguments.
Commands and arguments are separated by whitespace. Multiple commands can be
delimited with a ;, and a command sequence can be split into multiple lines.

Use the man command to look up the documentation for a command, a configuration
file, or a system call. Most commands are found in Section 1. You’ll find system calls
and library functions in Sections 2 and 3.

echo displays a message on the screen. It supports escape sequences (like \¢ and
\007). The command has portability problems, the reason why printf should be used.
printf also supports format specifiers (like %d).

script logs all user activities in a separate file named typescript.

A mail message is saved in a text file called mailbox. Mail is moved to the mbox
after it is viewed. mailx, a command-line mail program, can be used interactively and
also noninteractively from shell scripts.

date displays any component of the system date and time in a number of formats.
passwd changes a user’s password. The system administrator can change the system
date and the password of any user.

uname reveals details of your machine’s operating system (-r and -s). It also
displays the hostname (-n) that is used by networking commands.

who displays the users working on the system.

stty displays and sets various terminal attributes. It defines the key that interrupts
a program (intr), suspends a job (susp), and marks the end-of-file (eof). stty sane
sets the terminal to some standard values.

The X Window System provides a Graphical User Interface (GUTI) for users to run
programs that involve graphics. X also provides several applications including a terminal
emulator and a file management program.

SELF-TEST

2.1 Enter a: and press [Enter]. Next run type :. What do you conclude?
2.2 UNIX commands must be in lowercase and must not have extensions. True
or false?

50

Your UNIX: The Ultimate Guide

2.3 Name three UNIX commands whose names are more than five characters long.

2.4 Find out whether these commands are internal or external: echo, date, pwd, and 1s.

2.5 If two commands with the same filename exist in two directories in PATH, how
can they be executed?

2.6 How is the current directory indicated in PATH?

2.7 How many options are there in this command? 1s -lut chap0l note3

2.8 If you find yourself using options preceded by two hyphens (like --a11), which
flavor of UNIX could you be using?

2.9 What is the name given to the command, and its options and arguments?

2.10 How do you find out the version number of your operating system?

2.11 Why are the directories /bin and /usr/bin usually found first in PATH?

2.12 What is whitespace? Explain the treatment the shell metes out to a command
that contains a lot of whitespace.

2.13 Do you need to wait for a command to finish before entering the next one?

2.14 Why doesn’t this command run in the way it is meant to?
printf "Filename: %s\n", fname

2.15 What is a pager? Name the two standard pagers used by man.

2.16 You located the string crontab in a man page by searching with /crontab/Enter].
How do you find out the other occurrences of this string in the page?

2.17 You don’t know the name of the command that could do a job. What do you do?

2.18 How do you find out the users who are idling from the man documentation
of who?

2.19 What is the difference between the mailbox and mbox?

2.20 The passwd command didn’t prompt for the old password. When do you think
that can happen? Where is the password stored?

2.21 Can you change the system date with the date command?

2.22 Enter the uname command without any arguments. What do you think the output
represents?

2.23 How will you record your login session in the file f00?

2.24 - Interpret the following output of who am i:
romeo pts/10 Aug 1 07:56 (pcl23.heavens.com)

2.25 How do you determine the erase, kill, and eof characters on your system?

2.26 You suddenly find your keyboard is displaying uppercase letters even though
your [CapsLock] key is set properly. What should you try?

EXERCISES

2.1 Enter a # before a command and press [Enter]. What do you see, and how do
you think you can take advantage of the behavior?

2.2 Name three major differences between UNIX commands and Windows programs.

2.3 A program file named foo exists in the current directory, but when we try to

execute it by entering foo, we see the message foo: command not found. Explain
how that can happen.

Chapter 2: Becoming Familiar with UNIX Commands 51

24

2.5
2.6

2.7
2.8

29
2.10

2.11

2.12

2.13

2.14
2.15

2.16

2.17
2.18

2.19
2.20
221

2.22

223
224

If a command resides in a directory which is not in PATH, there are at least two
ways you can still execute it. Explain.

Where are the commands used by the system administrator located?

You won’t find the ¢d command either in /bin or /usr/bin. How is it executed
then?

If you find the echo command in /bin, would you still call it an external command?
Is an option also an argument? How many arguments are there in this command?
cat < foo > bar

Why shouldn’t you have a filename beginning with a -?

Reduce the number of keystrokes to execute this command:

tar -t -v -f /dev/fdo.

Look up the tar man page to find out whether the command

tar -cvfb 20 foo. tar *.c is legitimate or not. Will the command work without
the - symbol?

Both commands below try to open the file foo, but the error messages are a little
different. What could be the reason?

$ cat foo

cat: foo: No such file or directory
$ cat < foo

bash: foo: No such file or directory

Invoke the commands echo hello dolly and echo "hello dolly" (three
spaces between he1lo and do11y). Explain the difference in command behavior.
What does the secondary prompt look like, and when does it appear?

What do the | and the three dots in the SYNOPSIS section of these man pages
indicate as shown below?

/usr/xpg4/bin/tail [-f | -r]
/usr/bin/1s [-aAbcCdfFgillLmnopgrRstuxl] [file ...]

If a command, filename, and a system call have the same name and are available
in Sections 1, 5, and 2 respectively, how will you display the man pages of each
one of them?

Your system doesn’t have the apropos command. What will you do?

The command echo "Filename: \c" didn’t place the cursor at the end of the
line. How will you modify the command to behave correctly if your shell is
(i) Bash, (ii) any other shell?

What is an escape sequence? Name three escape sequences used by the eche
command, and explain the significance of each.

Use printf to find out the hex and octal values of 255.

Run ps, then the script command, and then run ps again. What do you notice?
In what way is the mai1x command superior to a GUI program like Netscape or
Mozilla?

Can you have the same user-id more than once in the who output?

Both your local and remote machines use identical versions of UNIX. How do
you confirm whether you are logged in to a remote machine or not?

52

225

2.26

227

2.28

2.29

Your UNIX: The Ultimate Guide

Which command does the nonprivileged user use to change the system date
and time?

Display the current date in the form dd/mm/yyyy.

You need to accept a secret code through a shell script. What command will you
run in the script to make sure that your keyboard input is not displayed? How do
you then revert to the normal setting?

Explain why it is possible to key in the next command before the previous
command has completed execution.

What will you do to ensure that {Ctri-c/ interrupts a program? Will it work the
next time you log in?

3.1

CHAPTER

The File System

NIX looks at everything as a file, and any UNIX system has thousands of

files. For convenience, we make a distinction between ordinary files and
directories that house groups of files. In this chapter, we’ll create directories, navigate the
file system, and list files in a directory. We’ll also examine the structure of the standard
UNIX file system.

In addition, we’ll copy, move, and delete files, and understand how these actions
affect the directory. Some commands exhibit recursive behavior by descending a directory
structure to perform some action. Because we frequently encounter Windows systems,
we need to be able to move files between UNIX and Windows systems. As Internet
users, we also need to handle compressed files that we download. However, we don’t
tamper with the major file attributes in this chapter.

Objectives

* Understand the initial categorization of files into ordinary, directory, and device.
* Learn the hierarchical structure of the file system, and how UNIX organizes its own data.
* Understand the significance of the home directory and current directory.

* Create and remove directories with mkdir and rmdir.

» Navigate the file system with c¢d and pwd.

» Become aware of the significance of absolute and relative pathnames.

» List files with 1s.

* Copy, rename, and delete files with ¢cp, mv, and rm.

* View text files with cat and more.

« Count the number of lines, words, and characters with wc.

¢ Learn how UNIX handles printing and using 1p and 1pr.

+ Display the nonprintable characters in a file with od.

¢ Convert between UNIX and DOS formats with unix2dos and dos2unix.

* Compress files with gzip and create archives comprising multiple files with tar.
* Perform both compressing and archiving with zip.

The File

The file is a container for storing information. As a first approximation, we can treat it
simply as a sequence of characters. UNIX doesn’t impose any structure for the data held

53

82

3.24

Your UNIX: The Ultimate Guide

Viewing the Archive (-v) You can view the compressed archive with the -v option.
The list shows both the compressed and uncompressed size of each file in the archive
along with the percentage of compression achieved:

$ unzip -v archive.zip
Archive: archive.zip
Length Method Size Ratio Date Time CRC-32 Name

3875302 Defl:N 788068 80% 08-24-02 19:49 fae93ded Tibc.html
372267 Defl1:N 128309 66% 08-24-02 19:48 7839e6b3 User_Guide.ps

4247569 916377 78% 2 files

Other Ways of Using These Commands

The commands discussed in this chapter don’t always take input from files. Some
commands (like more and 1p) use, as alternate sources of input, the keyboard or the
output of another command. Most of the other commands (like wc, cat, od, gzip, and
tar) can also send output to a file or serve as input to another command. Some examples
in this chapter (and previous ones) have shown this to be possible with the
> and | symbols. The discussion of these techniques is taken up in Chapter 7.

SUMMARY

We considered three types of files—ordinary, directory, and device. A directory maintains
the inode number and name for each file. The kernel uses the attributes of a device file
to operate the device. File attributes are maintained in the inode.

A filename is restricted to 255 characters and can use practically any character.
Executable files don’t need any specific extensions.

UNIX supports a hierarchical file system where the top-most directory is called
root. An absolute pathname begins with a / and denotes the file’s location with respect
to root. A relative pathname uses the symbols . and .. to represent the file’s location
relative to the current and parent directory, respectively.

pwd tells you the current directory, and cd is used to change it or to switch to the
home directory. This directory is set in /etc/passwd and is available in the shell variable
HOME. A file f00 in the home directory is often referred to as $HOME/foo or ~/foo.

mkdir and rmdir are used to create or remove directories. To remove a directory
bar with rmdir, bar must be empty and you must be positioned above bar.

By default, 1s displays filenames in ASCII collating sequence (numbers, uppercase,
lowercase). It can also display hidden filenames beginning with a dot (-a). When used
with a directory name as argument, 1s displays the filenames in the directory.

You can copy files with ¢p, remove them with rm, and rename them with mv. All
of them can be used interactively (-1), and the first two can be used to work on a
complete directory tree (-r or -R) i.e., recursively. rm -r can remove a directory tree
even if is not empty.

Chapter 3: The File System 83

cat and more are used to display the contents of a file. more supports a number of
internal commands that enable paging and searching for a pattern. Linux offers 1ess as
a superior pager.

1p submits a job for printing which is actually carried out by a separate program.
Linux and many UNIX systems use the 1pr command for printing. Both can be directly
used to print Postscript documents.

wc counts the number of lines, words, and characters. od displays the octal value
of each character and is used to display invisible characters.

The dos2unix and unix2dos commands convert files between DOS and UNIX.
DOS files use CR-LF as the line terminator, while UNIX uses only LF.

gzip and gunzip compresses and decompresses individual files (extension: .gz).
tar can archive a directory tree and is often used with gzip to create compressed archives
(extension: .tar.gz). zip and unzip use .z ip files. zip alone can create a compressed
archive from directory structures (-r). bzip2 is better than them (extension: .bz2).

SELF-TEST

3.1 How long can a UNIX filename be? What characters can’t be used in a filename?

3.2 State two reasons for not having a filename beginning with a hyphen.

3.3 Name the two types of ordinary files, and explain the difference between them.
Provide three examples of each type of file.

34 Can the files note and Note coexist in the same directory?

3.5 Frame cd commands to change from (i) /var/spool/1p/admins to
/var/spool/mail, (ii) /usr/include/sys to /usr.

3.6 Switch to the root directory with ed, and then run ed .. followed by pwd. What
do you notice?

3.7 Explain the significance of these two commands: 1s .. ; 1s -d ..

3.8 Can you execute any command in /shin and /usr/sbin by using the absolute
pathname?

3.9 If the file /bin/echo exists on your system, are the commands echo and
/bin/echo equivalent?

3.10 Look up the man pages of mkdir to find out the easiest way of creating this
directory structure: share/man/catl.

311 Ifmkdir test fails, what could be the possible reasons?

3.12 How do you run 1s to (i) mark directories and executables separately, (ii) also
display hidden files?

3.13 What will cat foo foo foo display?

3.14 A file contains nonprintable characters. How do you view them?

3.15 How will you copy a directory structure bar1 to bar2? Does it make any difference
if bar? exists?

3.16 Assuming that bar is a directory, explain what the command rm -rf bar does.
How is the command different from rmdir bar?

3.17 How do you print the file /etc/passwd on the printer named laser on System V
(i) to generate three copies, (ii) and know that the file has been printed?

84

Your UNIX: The Ultimate Guide

3.18 How will you find out the ASCII octal values of the numerals and alphabets?
3.19 Run the we command with two or more tilenames as arguments. What do you see?
EXERCISES

3.1 Describe the contents of a directory, explaining the mechanism by which its entries
are updated by ¢p, mv, and vm. Why is the size of a directory usually small?

3.2 How does the device file help in accessing the device?

33 Which of these commands will work? Explain with reasons: (i) mkdir a/b/c,
(i) mkdir a a/b, (iii) rmdir a/b/c, (iv) rmdir a a/b, (v) mkdir /bin/foo.

3.4 The command rmdir ¢_progs failed. State three possible reasons.

3.5 Using echo, try creating a file containing (i) one, (ii) two, and (iii) three dots.
What do you conclude?

3.6 The command rindir bar fails with the message that the directory is not empty.
On running 1s bar, no files are displayed. Why did the rmdir command fail?

3.7 How does the command mv barl bar2 behave, where both barl and bar2 are
directories, when (i) bar?2 exists and (ii) bar? doesn’t exist?

3.8 Explain the difference between the commands cd ~charlie and c¢d ~/charlie.
Is it possible for both commands to work?

3.9 charlie uses /usr/charlie as his home directory and many of his scripts refer
to the pathname /usr/charlie/htm1. Later, the home directory is changed to
/home/charlie, thus breaking all his scripts. How could charlie have avoided
this problem?

3.10 Why do we sometimes run a command like this—. /update.sh instead of
update.sh?

3.11 What is the sort order prescribed by the ASCII collating sequence?

3.12 The commands 1s bar and 1s -d bar display the same output—the string bar.
This can happen in two ways. Explain.

3.13 Assuming that you are positioned in the directory /home/romeo, what are
these commands presumed to do, and explain whether they will work at all:
(iycd ../.., (1) mkdir ../bin, (iii) rmdir .., Gv) Ts ...

3.14 Explain what the following commands do: (i) cd, (i) cd $HOME, (iii) cd ~.

3.15 The command cp hosts backup/hosts.bak didn’t work even though all files
exist. Name three possible reasons.

3.16 You have a directory structure $HOME/a/a/b/c where the first a is empty. How
do you remove it and move the lower directories up?

3.17 Explain what the following commands do: (i) rm *, (ii) rm -1 *, (ili) rm -rf *

3.18 What is the significance of these commands? (i) mv $HOME/include .,
(ii) cp -r barl bar2, i) mv * ../bin.

3.19 Will the command cp foo bar work if (i) foo is an ordinary file and bar is a
directory, (ii) both foo and bar are directories?

3.20 Explain the significance of the repeat factor used in more. How do you search

for the pattern include in a file and repeat the search? What is the difference
between this repeat command and the dot command?

Chapter 3: The File System 85

3.21

3.22

3.23

3.24

3.25

3.26
3.27

3.28

Look up the man page for the file command, and then use it on all files in the
/dev directory. Can you group these files into two categories?

How do DOS and UNIX text files differ? Name the utilities that convert files
between these two formats?

Run the script command, and then issue a few commands before yourun exit.
What do you see when you run cat -v typescript?

Run the tty command, and note the device name of your terminal. Now use this
device name (say, /dev/pts/6) in the command cp /etc/passwd /dev/pts/6.
What do you observe?

How do you use tar to add two files, foo.htm1 and bar.html, to an archive,
archive.tar, and then compress the archive? How will you reverse the entire
process and extract the files in their original uncompressed form?

Name three advantages zip has over gzip.

How do you send a complete directory structure to someone by email using
(i) tar, (i) zip? How does the recipient handle it? Which method is superior
and why? Does gzip help in any way?

What is meant by recursive behavior of a command? Name four commands,
along with a suitable example of each, that can operate recursively.

110

Note

4.11.2

4.11.3

Your UNIX: The Ultimate Guide

find uses an AND condition (an implied -a operator between -perm and -type) to
select directories that provide all access rights to everyone. It selects files only if both
selection criteria (-perm and -type) are fulfilled.

Finding Unused Files (-mtime and -atime) Files tend to build up incessantly on
disk. Some of them remain unaccessed or unmodified for months—even years. find’s
options can easily match a file’s modification (-mtime) and access (-atime) times to
select them. The -mt ime option helps in backup operations by providing a list of those
files that have been modified, say, in less than 2 days:

find . -mtime -2 -print

Here, -2 means less than 2 days. To select from the /home directory all files that have
not been accessed for more than a year, a positive value has to be used with -atime:

find /home -atime +365 -print

+365 means greater than 365 days; -365 means less than 365 days. For specifying exactly 365,
use 365.

The find Operators (!, -0, and -a)
There are three operators that are commonly used with find. The ! operator is used
before an option to negate its meaning. So,

find . ! -name "*.c" -print

selects all but the C program files. To look for both shell and per1 scripts, use the -0
operator which represents an OR condition. We need to use an escaped pair of parentheses
here:

find /home \(-name "*.sh" -0 -name "*.p1" \) -print

The (and) are special characters that are interpreted by the shell to run commands in
a group (7.6.2). The same characters are used by find to group expressions using the
-0 and -a operators, the reason why they need to be escaped.

The -a operator represents an AND condition, and is implied by default whenever
two selection criteria are placed together.

Operators of the Action Component

Displaying the Listing (-1s) The -print option belongs to the action component
of the find syntax. In real life, you’ll often want to take some action on the selected
files and not just display the filenames. For instance, you may want to view the listing
with the -1s option:

$ find . -type f -mtime +2 -mtime -5 -1s -a option implied
475336 1 -rw-r--r-- 1 romeo users 716 Aug 17 10:31 ./c_progs/fileinout.c

Chapter 4: File Attributes 111

Note

find here runs the 1s -1ids command to display a special listing of those regular files
that are modified in more than two days and less than five days. In this example, we see
two options in the selection criteria (both -mt ime) simulating an AND condition. It’s
the same as using \(-mtime +2 -a -mtime -5 \).

Taking Action on Selected Files (-exec and -ok) The -exec option allows you to
run any UNIX command on the selected files. -exec takes the command to execute as
its own argument, followed by {} and finally the rather cryptic symbols \; (backslash
and semicolon). This is how you can reuse a previous find command quite meaningfully:

find $HOME -type f -atime +365 -exec rm {} \; Note the usage

This will use rm to remove all ordinary files unaccessed for more than a year. This can
be a risky thing to do, so you can consider using rm’s - i option. But all commands don’t
have interactive options, in which case, you should use find’s -ok option:

$ find $HOME -type f -atime +365 -ok mv {} $SHOME/safe \;
<mv/archive.tar.gz > ? y
<mv/yourunix02.txt > ? n
<mv/yourunix04.txt > ?2 y

mv turns interactive with -1 but only if the destination file exists. Here, -0k seeks
confirmation for every selected file to be moved to the $HOME /safe directory irrespective
of whether the files exist at the destination or not. A y deletes the file.

find is the system administrator’s tool, and in Chapter 19, you’ll see it used for a
number of tasks. It is specially suitable for backing up files and for use in tandem with
the xargs command (See Going Further of Chapter 7).

The pair of {} is a placeholder for a filename. So, -exec cp {} {}.bak provides a .bak extension
to all selected files. Don’t forget to use the \; symbols at the end of every -exec or -ok option.

SUMMARY

The 1s -1 command displays the listing containing seven file attributes. 1s -1d used
with a directory name lists directory attributes.

A file can have read, write, or execute permission, and there are three sets of such
permissions for the user, group, and others. A file’s owner uses chmod to alter file
permissions. The permissions can be relative or absolute. The octal digit 7 includes read
(4), write (2), and execute permissions (1).

Permissions have different significance for directories. Read permission means
that the filenames stored in the directory are readable. Write permission implies that
you are permitted to create or remove files in the directory. Execute (or search) permission
means that you can change to that directory with the ¢d command.

The umask setting determines the default permissions that will be used when
creating a file or a directory.

112

Your UNIX: The Ultimate Guide

Multiple file systems, each with its own root directory are mounted at boot time to
appear as a single file system. A file’s attributes are stored in the inode which is identified
by the inode number. The inode number is unique in a single file system.

A file can have more than one name or link, and is linked with 1n. Two linked
filenames have the same inode number. A symbolic link contains the pathname of another
file or directory and is created with In -s. The file pointed to can reside on another file
system. rm removes both types of links.

Hard links provide protection against accidental deletion but removing the file
pointed to by a symlink can be dangerous. Both links enable you to write program code
that does different things depending on the name by which the file is invoked.

chown and chgrp are used to transfer ownership and group ownership, respectively.
They can be used by the owner of the file on AT&T systems. On BSD systems, chown
can be used only by the superuser, and a user can use chgrp to change her group to
another to which she also belongs.

A file has three time stamps including the time of last modification and access.

find looks for files by matching one or more file attributes. A file can be specified
by type (-type), name (-name), permissions (-perm), or by its time stamps (-mt ime and
-atime). The -print option is commonly used, but any UNIX command can be run on
the selected files with or without user confirmation (-1s, -exec, and -o0k).

SELF-TEST

4.1 What do you understand by the listing of a file? How will you save the complete
listing of all files and directories (including the hidden ones) in the system?

4.2 Show the octal representation of these permissions: (i) rWXr-xrw-,
(i) rw-r----- , (i) --X-w=r--,

43 What will the permissions string look like for these octal values? (i) 567,
(ii) 623, (iii) 421

44 What does a group member require to be able to remove a file?

4.5 If a file’s permissions are 000, can the superuser still read and write it?

46 You removed the write permission of a file from group and others, and yet they
could delete your file. How could that happen?

47 Try creating a directory in the system directories /bin and /tmp and explain
your observations.

4.8 Copy afile with permissions 444. Copy it again and explain your observations.

49 How do you ensure that all ordinary files created by you have rw-rw---- as the
default permissions?

4.10 How do you display the inode number of a file?

4.11 What does the inode store? Which important file attribute is not maintained in
the inode? Where is it stored then?

4.12 What do you mean by saying that a file has three links?

4.13 How do you remove (i) a hard link, (ii) a symbolic link pointing to a directory?

4.14 How do you link all C source files in the current directory and place the links in
another directory, bar?

4.15 A symbolic link has the same inode number as the file it is linked to. True or false?

Chapter 4: File Attributes 113

4.16 How do you link fool to foo2 using (i) a hard link, (ii) a symbolic link? If you
delete fo02, does it make any difference?

4.17 Copy the file /etc/passwd to your current directory and then observe the listing
of the copy. Which attributes have changed?

4.18 Where are the UID and GID of a file stored?

4.19 How is chown different from chgrp on a BSD-based system when it comes to
renouncing ownership?

4.20 Explain with reference to the dot and * what the following commands do:
(i) chown -R project ., (ii) chgrp -R project *.

421 When you invoke 1s -1 foo the access time of foo changes. True or false?

4.22 View the access time of a file with 1s -Tu foo before appending the date command
output to it using date >> foeo. Observe the access time again. What do you see?

423 Devise a find command to locate in /docs and /usr/docs all filenames that
(i) begin with z, (ii) have the extension .htm1 or . java..

EXERCISES

4.1 A file contains 1026 bytes. How many bytes of disk space does it occupy?

4.2 Does the owner always belong to the same group as the group owner of a file?

43 Explain the significance of the following commands: (i) 1s -1d ., @i) 1s -1 ..

4.4 Create a file foo. How do you assign all permissions to the owner and remove all
permissions from others using (i) relative assignment and (ii) absolute assignment?
Do you need to make any assumptions about f00’s default permissions?

4.5 From the security viewpoint, explain the consequences of creating a file with
permissions (i) 000, (ii) 777.

4.6 Examine the output of the two commands below on a BSD-based system. Explain
whether romeo can (i) edit, (ii) delete, (iii) change permissions, (iv) change owner-

ship of foo:

$ who am i ; 1s -1 foo

romeo

-r--rw---- 1 sumit romeo 78 Jan 27 16:57 foo

4.7 Assuming that a file’s current permissions are rw-r-xr--, specify the chmod
expression required to change them to (i) rwxrwxrwx, (i) r--r----- , (i) ==-r--r--,
(iv) ========= , using both relative and absolute methods of assigning permissions.

4.8 Usechmod -w . and then try to create and remove a file in the current directory.
Can you do that? Is the command the same as chmod a-w foo?

49 You tried to copy a file foo from another user’s directory, but you got the error
message cannot create file foo. You have write permission in your own
directory. What could be the reason, and how do you copy the file?

4.10 What do you do to ensure that no one is able to see the names of the files you have?

4.11 The command cd bar failed where bar is a directory. How can that happen?

4.12 If a file has the permissions 000, you may or may not be able to delete the file.
Explain how both situations can happen. Does the execute permission have any
role to play here?

114

4.13

4.14

4.15

4.16

4.17

4.18

4.19
4.20

421

4.22

4.23

4.4

4.25

4.26
4.27

4.28
4.29

4.30

Your UNIX: The Ultimate Guide

If the owner doesn’t have write permission on a file but her group has, can she

(i) edit it, (i) delete it?

If umask shows the value (i) 000, (i) 002, what implications do they have from

the security viewpoint?

The UNIX file system has many root directories even though it actually shows

one. True or false?

What change takes place in the inode and directory when a filename is connected

by a hard link?

If 1s -11 shows two filenames with the same inode number, what does that
indicate?

What happens when you invoke the command 1n foo bar if (i) bar doesn’t exist,
(ii) bar exists as an ordinary file, (iii) bar exists as a directory?

How can you make out whether two files are copies or links?

Explain two application areas of hard links. What are the two main disadvantages
of the hard link?

You have a number of programs in $HOME /progs which are called by other programs.
You have now decided to move these programs to $HOME/ internet/progs. How
can you ensure that users don’t notice this change?

Explain the significance of fast symbolic links and dangling symbolic links.
Explain how 1s obtains the (i) filename, (ii) name of owner, (iii) name of group
owner when displaying the listing.

How will you determine whether your system uses the BSD or AT&T version of
chown and chgrp?

The owner can change all attributes of a file on a BSD-based system. Explain
whether the statement is true or false. Is there any attribute that can be changed
only by the superuser?

What are the three time stamps maintained in the inode, and how do you display
two of them for the file foo?

How can you find out whether a program has been executed today?

Explain the difference between (i) 1s -1 and 1s -1t, (i) 1s -luand 1s -lut.
Use find to locate from your home directory tree all (i) files with the extension
.htm1 or .HTML, (ii) files having the inode number 9076, (iii) directories having
permissions 666, (iv) files modified yesterday. Will any of these commands fail?
Use find to (i) move all files modified within the last 24 hours to the posix
directory under your parent directory, (ii) locate all files named a.out or core
in your home directory tree and remove them interactively, (iii) locate the file
login.sq) in the /oracle directory tree, and then copy it to your own directory,
(iv) change all directory permissions to 755 and all file permissions to 644 in
your home directory tree.

CHAPTER

The vi/vim Editor

N o matter what work you do with the UNIX system, you’ll eventually write
some C programs or shell (or perl) scripts. You may have to edit some of
the system files at times. For all of this you must learn to use an editor, and UNIX
provides a very old and versatile one—vi. Bill Joy created this editor for the BSD
system. The program is now standard on all UNIX systems. Bram Moolenaar improved
it and called it vim (vi improved). In this text, we discuss vi and also note the features
of vim, available in Linux.

Like any editor, vi supports a number of internal commands for navigation and
text editing. It also permits copying and moving text both within a file and from one file
to another. The commands are cryptic but often mnemonic. vi makes complete use of
the keyboard where practically every key has a function. There are numerous features
available in this editor, but a working knowledge of it is all that you are required to have
initially. The advanced features of vi are taken up in Appendix C.

Objectives

» Know the three modes in which vi operates for sharing the workload.

* Repeat a command multiple times using a repeat factor.

» Insert, append, and replace text in the Input Mode.

* Save the buffer and quit the editor using the ex Mode.

¢ Perform navigation in a relative and absolute manner in the Command Mode.

» The concept of a word as a navigation unit for movement along a line.

+ Learn simple editing functions like deleting characters and changing the case of text.

» Understand the use of operator-command combinations to delete, yank (copy) and
move text.

* Copy and move text from one file to another.

* Undo the last editing action and repeat the last command.

* Search for a pattern, and repeat the search both forward and back.

* Replace one string with another.

* Master the three-function sequence to (i) search for a pattern, (ii) take some action,
and (iii) repeat the search and action.

* Customize vi using the :set command and the file ~/.exrc.

* Become familiar with two powerful features available in vim—word completion and
multiple undoing.

* Map your keys and define abbreviations (Going Further)

115

212

Your UNIX: The Ultimate Guide

Commands usually have limits on the number of arguments they can han.dle. xar"gs
uses the -n option to provide the specified number of arguments for a single invocation

of the command:
find / -name core -size +1024 -print | xargs -n20 rm -f

If find locates 100 files, rm will be invoked five times—each time with 20 filenames as
arguments. A useful tool indeed!

SUMMARY

The shell is a program that runs when a user logs in and' terrpinates when .she .logs outt.
It scans the command line for metacharacters and reb.uﬂds it before turning 1t over 1o
the kernel for execution. The shell may or may not wait for the command to terminate.
The shell matches filenames with wild cards. It can match any number of character;
(*) or a single one (?). It can also match a c.harac.ter class ([1) and negate a matc
([1]). The * doesn’t match a filename beginning w.1th a dot. . -
A wild card is escaped with a \ to be treated literally, and if there are a number '?
them, then they should be quoted. Single quot;as pr'oi)elct all 13[;::;:1}1 characters, while
command substitution and variabie eva .
doubl%ﬁi?ii?iiised with small integers called file descriptors. The shell makes
available three files representing standard input, standard output, and stgndgrd err%r to
every command that it runs. It manipulates the default source and destination of these
igning them to disk files. '
Stream"l?hbeyﬁ?eszm/%inev }‘% nu11 never grows in size, and every user can access her own terminal
® /del\gi/l;cetsyc'onnect the standard output of one command to the standard input qf an.otherf
Commands using standard output and standard input are called ﬁlters: A combination gs
filters placed in pipelines can be used to perform complex tasks which the comman

can’t perform individually. o .
The external tee command duplicates its input. It saves one to a file and writes

the other to the standard output.
Command substitution enables a command’s standard output to become the

arguments of another command. . .
* The shell supports variables which are evaluated by prefixing a $ to the variable

name. The variables that control the workings of the UNIX system are known as

environment variables. .
The shell is also a scripting language, and a group of commands can be placed in

a shell script to be run in a batch.

SELF-TEST

7.1 Why does the shell need to expand wild cards? How does it treat the * when

ike echo *)?
used as an argument to a command (li . .
772 What is the significance of the command 1s *.*? Does it match filenames thal

begin with a dot?

cnapter /o ine shell

213

7.3 How do you remove only the hidden files of your directory? Does rm * remove
these files as well?

7.4 Match the filenames chapa, chapb, chapc, chapx, chapy, and chapz with a
wild-card expression.

7.5 Is the wild-card expression [3-h]* valid?

7.6 Devise a command that copies all files named chap01, chap02, chap03, and so
forth through chap26 to the parent directory. Can a single wild-card pattern match
them all?

7.7 Frame wild-card patterns (i) where the last character is not numeric, (ii) that
have at least four characters.

7.8 When will ed * work?

7.9 Which UNIX command uses wild cards as part of its syntax?

7.10 How do you split a long command sequence into multiple lines?

7.11 Name the three sources and destinations of standard input and standard output.

7.12 Is the output of the command cat fool foo2 >/dev/tty directed to the standard
output?

7.13 Is this a legitimate command, and what does it appear to do? >foo <bar bc

7.14 How do you save your entire home directory structure including the hidden files
in a separate file?

7.15 What is the file /dev/null used for?

7.16 The commands cat and we, when used without arguments, don’t seem to do
anything. What does that indicate, and how do you return the shell prompt?

7.17 How do you create a filename containing just one space character? How can you
“see” the space in the 1s output?

7.18 How do you find out the number of (i) users logged in, (ii) directories in your
home directory tree?

7.19 Enter the commands echo "$SHELL" and echo '$SHELL'. What difference do
you notice?

7.20 Command substitution requires the command to use (i) standard input, (ii) standard
output, (iii) both, (iv) none of these.

7.21 Attempt the variable assignment X = 10 (space on both sides of the =). Does it
work if you are not using the C shell?

7.22 Toappend .c to a variable x, you have to use the expression (i) $x.c, (i) $x".c",
(iii) ${x} .c, (iv) any of these, (v) only the first two.

EXERCISES

7.1 What happens when you use (i) cat > foo if foo contains data,
(ii) who >> foo if foo doesn’t exist, (iii) cat foo > foo, (iv) echo 1> foo?

7.2 What does the shell do with the metacharacters it finds in the command line?
When is the command finally executed?

7.3 Devise wild-card patterns to match the following filenames: (i) fool, foo2 and
Foo5, (ii) quit.c, quit.o and quit.h, (iii) watch.htm, watch.HTML and
Watch.html, (iv) all filenames that begin with a dot and end with . swp.

7.4 Explain what the commands 1s .*and 1s *, display. Does it make any difference

if the -d option is added?

214

7.5

7.6

7.7

7.8

79

7.10

7.11

7.12

713
71.14

7.15

7.16

717

7.18

7.19

7.20

7.21

7.22

7.23

Your UNIX. The Ultimate Guide

How do you remove from the current directory all ordinary files that (i) are
hidden, (ii) begin and end with #, (iii) have numerals as the first three characters,
(iv) have single-character extensions? Will the commands work in all shells?
Devise wild-card patterns to match all filenames comprising at least three
characters (i) where the first character is numeric and the last character is not
alphabetic, (ii) not beginning with a dot, (iii) containing 2004 as an embedded
string except at the beginning or end.

Explain what these wild-card patterns match: () [A-z]????%, (ii) *[0-9]*,
(iii) *[10-9], Gv) *.[!s]i!h].

A directory bar contains a number of files including one named -f00. How do
you remove the file?

You have a file named * and a directory named My Documents in the current
directory. How do you remove them with a single command using (i) escaping,
(ii) quoting?

Explain the significance of single- and double-quoting including when one is
preferred to the other. What are the two consequences of using double quotes?
When will we < chap0[1-5] work? How can you remove chap0[1-5] if you
have a file of that name?

Explain why the error message is seen at the terminal in spite of having used the
2> symbol:

$ cat < foo 2>bar
ksh: cannot open foo: No such file or directory

How do the commands we foo andwe < foo differ? Who opens the file in each case?
You want to concatenate two files, fool and fo02, but also insert some text after
fool and before f002 from the terminal. How will you do this?

Execute the command 1s > newlist. What interesting observation can you
make from the contents of newlist?

How will you add the tags <html1> and </htm1> to the beginning and end
respectively of foo.htm1?

What are file descriptors? Why is 2> used as the redirection symbol for standard
error?

Create a file foo with the statement echo "File not found" in it. Explain two
ways of providing redirection to this statement so that the message comes to the
terminal even if you run foo > /dev/null.

How do the programs progl, prog2, and prog3 need to handle their standard
files so they can work like this? progl | prog2 | prog3.

Use command substitution to print the (i) calendar of the current month,
(ii) listing of a group of filenames stored in a file.

Explain the behavior of this command:

echo '“find $HOME -type d -print | wc -1"' > list. How do you
modify it to work correctly?

When will the command cd ~find . -type 1 -name scripts -print” work? If
it does, what do pwd and /bin/pwd display?

What is a filter? For the statement ~foo~ to work, does foo have to be a filter?

Lnapter /: 1ne »>neil

7.24

7.25

7.26

7.27

Z12>

Look up the tar and gzip documentation to find out how a group of files can be
archived and compressed without creating an intermediate file.

How will you store in a variable count (i) the total size of all C source files (.0

(ii) the total number of lines in a file? ’
Interpret these statements and the message displayed (if any): (i) $x=5

(ii) directory="pwd'="pwd". ,
A file foo contains a list of filenames. Devise a single statement, with suitable
explanation, that stores in a variable count the total character count of the contents
of these files. (HINT: Both command substitution and cat have to be used twice.)

236

Caution

Caution

Your UNIX: The Ultimate Guide

If you use crontab - to provide input through the standard input and then decide to abort it,
you should terminate it with the interrupt key applicable to your terminal, rather than [Ctrl-d].
If you forget to do that, you'll remove all entries from your existing crontab file!

cron’s strength lies in its unusual number matching system. You can match one or more
numbers if you keep in mind these rules:

« A *used in any of the first five fields matches any valid value.

« A set of numbers is delimited by a comma. 3,6,9 is a valid field specification.

« Ranges are possible and need not be restricted to a single digit. 00-10 includes all
integer values between 0 and 10.

Things don’t appear so simple when crontab fields conflict with one another. Take, for
instance, this entry:

00-10 17 * 3,6,9,12 5 find / -newer .last_time -print > backuplist

The first two fields indicate that the command is to run every minute from 17:00 hours
to 17:10 hours. The third field (being a *) specifies that it should run every day. The
fourth field (3,6,9,12), however, restricts the operation to four months of the year. The
fifth field limits execution to every Friday.

So, who overrides whom? Here, “Friday” overrides “every day.” The find
command will thus be executed every minute in the first 10 minutes after 5 p.m., every
Friday of the months March, June, September, and December (of every year).

So. what are the rules that determine which fields have the ultimate say? This
question arises when a * occurs in the third, fourth, or fifth fields. The rules are clearly
laid down by POSIX and Table 8.4 shows all possible combinations of these fields.

Unless you are sure, never use a * in the minute field. You'll receive a mail every minute, and
this could completely use up your mail quota if the command produces high-volume output.

cron is mainly used by the system administrator to perform housekeeping chores, like
removing outdated files or collecting data on system performance. It’s also extremely
useful to periodically dial up to an Internet mail server to send and retrieve mail.

The number matching system goes beyond POSIX requirements. It allows the use of
step values which enable us to use compact expressions. You can use 3-12/3 instead
of 3,6,9,12 that was used in our examples. Moreover, a * comes in handy here; */10
in the minutes field specifies execution every 10 minutes. The crontab file also supports
a MAILTO variable which sends mail to the user whose name is assigned to the variable.
The mail is suppressed if we set MAILTO="".

cron looks in a control file in /var/spoo1/cron in Red Hat. It additionally looks up
Jetc/crontab which specifies the user as an additional field (the sixth). This file
generally specifies the execution of files in the directories cron.hourly, cron.daily,
cron.week 1y, and cron.monthly (in /etc).

Chapter 8: The Process 237

8.13.1

TABLE 8.4 Sample crontab Entries (First five fields only)

Fields Matches
When a * occurs in any of the third, fourth, and fifth fields
00-10 17 * * * Every day

00-10 17 * 3,6,9,12 *

00-10 17 10,20,30 * * Three days in a month

00-10 17 * * 1,3 Monday and Wednesday

00-10 17 * 3,6,9,12 1,3 Either every day of four months or Monday and Wednesday
of every month

00-10 17 10,20,30 * 1,3 Either three days of every month or Monday and
Wednesday of every month

Every day but restricted to four months

Other Examples

0,30 * * x ¥ Every 30 minutes on the half-hour.

00 **=* Midnight every day.

55 17 * * 4 Every Thursday at 17:55 hours.

30 0 10,20 * * 00:30 hours on the tenth and twentieth of every month.

00,30 09-17 * * 1-5 On weekdays every half hour between 9 and 17 hours.

anacron cron assumes that the machine is run continuously, so if the machine is not
up when a job is scheduled to run, cron makes no amends for the missed opportunity.
The job will have to wait for its next scheduled run. The anacron command is often
more suitable than cron. anacron periodically inspects its control file
(/etc/anacrontab) to see if there’s a job which has “missed the bus.” If it finds one,
it executes the job.

Controlling Access to cron

All users may not be able to use cron. As with at and batch, the authorization to use
it is controlled by two files, cron.allow and cron.deny. If cron.allow is present,
only users included in this file are allowed to use this facility. If this file is not present,
cron.deny is checked to determine the users who are prohibited. In case neither of
them is present, depending on the system configuration, either the system administrator
only is authorized to use cron or all users are allowed access.

SUMMARY

A process is an instance of a running program. It is identified by the process-id (PID) and
its parent PID (PPID). Process attributes are maintained in the process table in memory.
. Because of multitasking, a process can spawn multiple processes. The login shell
is a process (PID = $$) that keeps running as long as the user is logged in.

You can list your own processes with ps, view the process ancestry (-), all users’
processes (-a), and all system processes (-e). BSD uses a different set of options.

238

Your UNIX: The Ultimate Guide

System processes, often called daemons, are generally not attached to a terminal and
not invoked specifically by a user. init is the parent of most daemons and all users’ shells.

A process is created by forking, which creates a copy (a child) of itself. The child
then uses exec to overwrite itself with the image of the program to be run.

The child turns into a zombie on termination. The kernel doesn’t remove its process
table entry until the parent picks up the exir stazus of the child. Premature death of the
parent turns the child into an orphan, and init takes over the parentage of all orphans.

The child’s environment inherits some parameters from the parent, like the real
and effective UID and GID, the file descriptors, the current directory, and environment
variables. However, changes in the child are not made available in the parent.

Built-in shell commands like pwd and cd don’t fork a separate process. Shell scripts
use a sub-shell to run the commands in a script.

The UNIX kernel communicates with a process by sending it a signal. Signals
can be generated from the keyboard or by the ki1l command. You can kill a process
with kill, and use ki1l -s KILL if a simple kill doesn’t do the job.

A job can be run in the background. nohup ensures that a background job remains
alive even after the user has logged out.

The C shell, Korn and Bash shells enable job control. You can move jobs between
foreground and background (fg and bg) and suspend (/Ctri-z]) them. You can list jobs
(jobs) and also kill them (kil?1).

You can schedule a job for one-time execution with at, or run it when the system
load permits with batch. cron lets you schedule jobs so that they run repeatedly. It
takes input from a user’s crontab file where the schedule and frequency of execution is
specified by five fields using a special number matching system.

SELF-TEST

8.1 What is the significance of the PID and PPID? Without using ps, how do you
find out the PID of your login shell?

8.2 How do you display all processes running on your system?

8.3 Which programs are executed by spawning a shell? What does the second shell do?

8.4 Name some commands that don’t require a separate process.

8.5 Name the two system calls required to run a program.

8.6 How will you find out the complete command lines of all processes run by user
timothy?

8.7 Run ps with the appropriate option, and note some processes that have no
controlling terminal.

8.8 How will you use ki1l to ensure that a process is killed?

8.9 How will you kill the last background job without knowing its PID?

8.10 How do you display the signal list on your system?

8.11 Should you run a command like this? nohup compute.sh

8.12 The jobs command displayed the message jobs: not found. When does that
normally happen?

8.13 In the midst of an editing session with vi or emacs, how do you make a temporary
exit to the shell and then revert to the editor?

Chapter 8: The Process 239

8.14 How do you find out the name of the job scheduled to be executed with at and
batch?

8.15 Frame an at command to run the script dial. sh tomorrow at 8 p.m.
8.16 Interpret the following crontab entry:

30 21 * * * find /tmp /usr/tmp -atime +30 -exec rm -f {} \;

8.17 You invoked the crontab command to make a crontab entry and then changed
your mind. How do you terminate the standard input that crontab is now
expecting?

8.18 How does the system administrator become the exclusive user of at and cron?

EXERCISES

8.1 Mention the significance of the two parameters, $$ and $!. Explain the differing
behavior of the command echo $$ when run from the shell prompt and inside a
shell script.

8.2 Mention the similarities that you find between processes and files.

8.3 If two users execute the same program, are the memory requirements doubled?

8.4 What are the two options available to a parent after it has spawned a child? How
can the shell be made to behave in both ways?

8.5 Explain the significance of this command: ps -e | wc -1.

8.6 Explain the attributes of daemon processes using three examples. How do you
display and identify them?

8.7 Which process will you look for in the ps output if you are not able to (i) print,
(ii) send out mail, (iii) log in using the secure shell?

8.8 Unlike the built-in commands, pwd and echo, which also exist as separate disk
files, why is there no file named c¢d on any UNIX system?

8.9 Which process do you think may have the maximum number of children? What
is its PID? Can you divide its children into two categories?

8.10 How is a process created? Mention briefly the role of the fork and exec system
calls in process creation.

8.11 Name five important process attributes that are inherited by the child from its parent.

8.12 A shell script foo contains the statement echo "$PATH $x". Now define x=5 at
the prompt, and then run the script. Explain your observations and how you can
rectify the behavior.

8.13 What is a zombie, and how is it killed?

8.14 Explain whether the following are true or false: (i) A script can be made to
ignore all signals. (ii) The parent process always picks up the exit status of its
children. (iii) One program can give rise to multiple processes.

8.15 What is the difference between a process run with & and one run with nohup?
8.16 What are signals? Name two ways of generating signals from the keyboard.
Why should we use ki1l with signal names rather than their numbers?

8.17 What is the difference between a job and a process? How do you (i) suspend the
foreground job, (ii) move a suspended job to the background, (iii) bring back a
suspended job to the foreground?

0.18

8.19

8.20

8.21

8.22

8.23

Interpret these crontab entries and explain if they will work:
(1) * * * * * dial.sh, (ii) 00-60 22-24 30 2 * find.sh

(iii) 30 21 ** * find /tmp /usr/tmp -atime +30 -exec rm -f {}\;. ’
Frame a crontab entry to execute the connect.sh script every 30 minutes on
every Monday, Wednesday, and Friday between the times of 8 a.m. and 6 p.m.

Create a directory 00, and then run a shell script containing the two commands
cd foo ; pwd. Explain the behavior of the script.

What does the exit command do? Why doesn’t it log you out when run in your
login shell like this? (exit)

The cron facility on your system is not working. How do you check whether the
process is running at all and whether you are authorized to use cron?

The administrator has decided that most users will be allowed to use at and
cron. What should she change that requires minimum effort?

9.1

CHAPTER

The Shell—Customizing
the Environment

he shell is different from other programs. Apart from interpreting metacharacters,

it presents an environment that you can customize to suit your needs. These
needs include devising shortcuts, manipulating shell variables, and setting up startup
scripts. A properly setup shell makes working easier, but the degree of customization
possible also depends on the shell you use.

This chapter presents the environment-related features of the Bash sheli, but also
examines the differences with three other shells—Bourne shell, C shell, and Korn shell.
After reading this chapter, you may want to select your shell. To aid you in this task, let
it be said right here that you’ll have a headstart over others if you select either Korn or
Bash as your login shell.

Objectives

¢ Learn the evolution of the four shells—Bourne shell, C shell, Korn shell, and Bash.
¢ Discover the difference between local and environment variables.

« Examine some environment variables like PATH, SHELL, MAIL, and so forth.

¢ Use aliases to invoke commands with short names.

» Use the history mechanism to recall, edit, and run previously executed commands.
» Edit any previous command line using the vi-like in-line editing feature.

» Use the tilde substitution feature to shorten pathnames that refer to the home directory.
» Prevent accidental overwriting of files and logging out using set -o.

¢ Make environment settings permanent using profiles and rc scripts.

* Manipulate the directory stack (Going Further).

The Shells

The UNIX shell is both an interpreter and a scripting language. This is one way of
saying that a shell can be interactive or noninteractive. When you log in, an interactive
shell presents a prompt and waits for your requests. This type of shell supports job
control, aliases, and history. An interactive shell runs a noninteractive shell when
executing a shell script.

Every feature used in a shell script can also be used in an interactive shell, but the
reverse is not true. Job control and history have no meaning in a shell script. In this
chapter, we are mostly concerned with interactive shells.

241

422

14.13.5

Your UNIX: The Ultimare Guide

FIGURE 14.2 Himy Web Page

Space.
Two tags provide the actual hy

ptertext capability— and <A>. Both of them

take on artribures in the form attriby

small in size and thug are ide
often a constraint.

The Web Browser

Chapter 14: Networking Tools

14.14

423

 tags, the browser fetches the images the tags link to—using a single Keep-
Alive connection, wherever possible. Every browser is also expected to offer these features:

 Step back and forth through documents viewed in a session.

¢ Save HTML files (and graphics) to the local machine.

* Bookmark important URLSs so they can be fetched later without actually entering
the URL.

* Support other application protocols like FTP and TELNET.

* Automatically invoke helper applications and special software (plugins) when
encountering a file format it can’t handle.

Like email clients, the earliest Web browsers were character-based, and the 1ynx browser
remained popular until the advent of graphics and X Window. Netscape Navigator is the
standard graphic browser for UNIX systems today. Linux users have a wider choice in
Navigator, Mozilla, Konqueror, (part of KDE) and Firefox.

Multimedia on the Web: MIME Revisited

Web documents today feature a variety of multimedia objects like Java applets,
RealAudio, RealVideo, and Shockwave technology. MIME technology (14.11} also
applies to multimedia files on the Web. However, these files are sent by Web servers not
as multipart messages but as independent files. The server sends the content type to the
client before it sends the file. It does this by looking up mime. types that associates the
content type with the file’s extension, as shown below for a PDF document:

type=application/acrobat exts=pdf Solaris
application/pdf pdf Linux

When a browser encounters an unfamiliar data format, it first sees whether there is a
plugin in its arsenal. A plugin is a piece of software installed (“plugged”) in the browser.
It is normally small in size and has the minimal features required for simple viewing
(or, in case of audio and video, playing). You can’t invoke a plugin separately as you can
call up a helper application (explained next) like Acrobat Reader. When a file is viewed
with a plugin, it appears inline with the HTML text, and not in a separate window.

If the browser is not able to locate a plugin for a specific content type, it looks up
mailcap to determine the helper application. This is a separate standalone application
that can also be invoked separately from the UNIX command line. We saw one entry in
this file in Section 14.11 that specified acroread for application/pdf. Unlike in Windows,
UNIX Netscape doesn’t have this file configured well, so you’ll have to fill it up yourself.

SUMMARY

TCP/IP is a suite of protocols that connects heterogeneous machines in a network. It
splits data into packets and ensures reliable transmission with full error control. Packets
pass through routers to reach their destination.

424

Your UNIX: The Ultimate Guide

A host is represented by a unique hostname and a unique IP address comprising
four dot-separated octets. A host can be accessed both by its IP address and hostname,
but TCP/IP packets contain only IP addresses.

The hostname-IP address translation is performed by /etc/hosts or the Domain
Name System (DNS). The hosts file is maintained on all machines of a network, DNS
understands a host by its fully qualified domain name (FQDN) and distributes the
mappings across a number of name servers. The resolver queries the hosts file or DNS
to perform the translation.

TCP/IP works in the client-server model. Server programs are known as daemons,
which run in the background and listen for requests at certain ports.

telnet is used to run commands on a remote machine and display the output on
the local machine. ftp transfers files between two hosts. You can upload one or more
files (put and mput) or download them (get and mget). Anonymous FTP lets you
download files from the Internet.

The secure shell is more secure than telnet and ftp as it encrypts the entire
session including the password. It uses a symmetric key for encryption of bulk data, but
uses asymmetric keys (public and private) for host and user authentication and key
distribution. You can log in in a secure manner (ssh and slogin), transfer files (scp
and sftp), and run a command remotely (ssh).

Internet mail is handled by three agencies. You read and compose mail using a
Mail User Agent (MUA). The Mail Transport Agent (MTA) transports mail to the MTA
at the receiving end using the Simple Mail Transfer Protocol (SMTP). The Mail Delivery
Agent (MDA) delivers the mail to the user’s mailbox.

The Web works on the Hyper Text Transfer Protocol (HTTP) at port 80. Web
documents written in the Hyper Text Markup Language use hypertext to link one
document with another resource. An HTML document is cross-platform and can be
viewed in any environment.

The Uniform Resource Locator (URL) combines the FQDN of the site with a
pathname. It can point to a static resource like a file Or a program to be run, using the
Common Gateway Interface (CGI). perl is the language of choice for CGI programming.

The Multipurpose Internet Mail Extensions (MIME) standard enables
transmission of binary data in both email and HTTP. The Content-Type: and
Content-Transfer-Encoding: headers together define the type of data and encoding
techniques used. The file mime.t ypes associates the content type with a file’s extension,
and mailcap specifies the helper application that will handle a specific content type.

SELF-TEST

14.1 Why is TCP termed a reliable protocol?

142 What is the significance of the port number? How will you find out the port
number finger uses?

143 Why are the TELNET and FTP services increasingly being disabled on most
networks? What are they being replaced with?

144 How can you be sure whether you are working on the local machine or have
used telnet or ssh to log on to a remote machine?

i 425
Chapter 14: Networking Tools

14.5 You copied a graphics file with ftp, and the file appears corrupted. What could
be the possible reason? '

14.6 With which command do you upload files to an anonymous FTP site?

147 What is a brute force attack? Why does the security of data mainly depend on
the size of the key? .

14.8 To send a large volume of data securely over a network connection, what form
of encryption would you adopt? N

14.9 What is the difference between a password and a passphrase? Why is it necessary
to have a passphrase? o

14.10 Using scp, how will you noninteractively copy all files from juliet’s home
directory on host saturn without knowing the absolute pathname of her home
directory? .

14.11 What does this command do? ssh jupiter date \> .date . .

14.12 How does X solve the problem of running the same program on different displays
with different characteristics? o .

14.13 Can an X client like xterm running on a Solaris machine display its output on a
HP-UX machine?

14.14 What is the problem with /etc/hosts?

14.15 Name three top-level domains that have been added to the. Internet namespace
in the year 2000. Is the domain name WWW.suse. COm valid?

14.16 Explain the significance of the MUA and MTA. Whom does the MTA hand over
mail to?

14.17 How are binary files included in mail messages even though SMTP handles
only 7-bit data? Name the two mail headers that play an important role here.

14.18 The browser can display three types of images without needing external help.
What are they?

14.19 What is hypertext? Is it confined to text only?

14.20 What is HTTP? Which port number does it use?

14.21 What are CGI programs? How are they invoked? . -

14.22 How do you access the home page of the Web server running on your own machine?

EXERCISES

14.1 How is a TCP/IP network different from a telephone network?

14.2 What is an FQDN? Why are hostnames not used on the Internet, but onl'y FQDNs?

14.3 Describe the role of the resolver when handling (i) simple hostmames, (ii) FQDNs.

144 Name three important features of DNS. What advantages does DNS have over
the hosts file? o ’

14.5 Explain the role of a name server. What does a name server do if it can’t handle
an FQDN? .

14.6 Whe(nzyou change your local directory from inside ftp, will the changed directory
still be in place after you quit ftp, and why? .

14.7 When A sends data to B over a network connection using public key. cx:yptography,
how does A achieve the goals of (i) authentication, (ii) confidentiality?

426
14.8
14.9
14.10
14.11
14.12
14.13
14.14

14.15
14.16

14.17

14.18

14.19
14.20

14.21

14.22

14.23

14.24

Your UNIX: The Ultimate Guide

Public key cryptography is more suitable for key distribution than bulk data encryption.
Explain how you can use this mechanism to distribute a symmetric key.

For using SSH, why does a host also need to have a public and private key?
Explain how you can generate a public/private key pair for yourself.

Explain how the ssh-agent and ssh-add programs enable noninteractive logins.
Cite two reasons why scp is preferable to ftp.

How is the client-server mechanism in X different from others?

HOW can romeo running Netscape on his machine sarurn write its output to
juliet’s display on a remote machine uranus? Do both users need to run X?
Why is the DISPLAY variable more convenient to use than the ~d i splay option?
Explain how the general mail handling scheme changes when a user connects to
the mail server over a dialup line.

Explain the significance of each word in the acronym URL. What happens if you
leave out the port number in the URL?

Why is HTTP called a stateless protocol? What is meant by the Keep-Alive
feature?

Why is the HTML format specially suitable for Web documents?

Can you use WWW.PLANETS.COM/CATALOG.HTML instead of
www.planets.com/ catalog.html as the URL?

To download a Web page with 10 graphics, how many connections are required
in (i) HTTP 1.0, (i) HTTP 1.1?

If a browser passes data from an HTML form to the server, how does the server
handle the data?

What is a helper application, and how does it differ from a plugin? Explain the
role of the files, mime.types and mailcap, when using a helper application.
What is MIME? How are the limitations of SMTP in handling mail attachments
overcome by MIME?

CHAPTER

perl—The Master
Manipulator

erl is UNIX’s latest major acquisition, and one of its finest. Developed by
Larry Wall, this Practical Extraction and Report Language is often hailed as
the “Swiss Army Officer’s Knife” of the UNIX system. In per1, Wall invented a catchall
tool that does several things well. per1 is standard on Linux and also offered on Solaris.
However, it is free, and executables are available for all UNIX flavors
(http://www.perl.com).
perl is both a scripting language and the mother of all filters. It combines the power
of C, the UNIX shell, and its power filters—grep, tr, sed, and awk. It has all the control
structures and regular expressions that you could find anywhere. It is exceedingly cryptic,
even by UNIX standards, and can solve text manipulation problems with very compact
code. In spite of offering so much, perl is faster than the shell and awk (but not C).

Objectives

» Gain an overview of a sample perl program.

 Understand how perl treats variables and constants and changes their type when
required.

» Learn how to use the concatenation and repetition operators (. and X).

+ Read files both in the command line and inside a script from command line arguments.

+ Understand the significance of the default variable, $_, and how its presence can be
felt everywhere.

 Use lists and scalar arrays, and the functions to manipulate them.

+ Use the foreach loop for working with a list.

 Split and join a line with split and join.

+ Handle associative arrays with a nonnumeric subscript.

 Examine per1’s enlarged regular expression set which uses special escape sequences.

« Filter data with the s and tr commands.

o Use filehandles to access a file or stream.

¢ Test the file attributes.

» Develop subroutines for repeated use.

+ Gain an overview of CGI and how perl is suitable for the task. (Going Further)

427

498

Your UNIX: The Ultimate Guide

16.11.4 Making a Reassignment

16.11.5

We’ll Now use a helpful debugger feature to change the value of a variable without
recompiling the program. This requires the assign command, so let’s learn to use it
before we run the program again with rerun:

(dbx) help assign
assign (command)
assign <var> = <exp> # Assign the value of the <exp> to <var>
(dbx) rerun
Running: a.out
{process id 1542)
Enter a multiword string: gdb is a better debugger
stopped in main at line 16 in file "parsestring.c"
16 clargs[0] = strtok(buf, DELIM); /* first word */

The program stops at the breakpoint defined earlier. Let’s now assign 1 to n:

(dbx) print n
n=20

(dbx) assignn =1
(dbx) print n
n=1

Now let’s issue a series of step commands till we reach line 22:

(dbx) step
stopped in main at line 17 in file "parsestring.c"
17 while ((clargs[n] = strtok(NULL, DELIM)) != NULL)
- Mmore step commands
22 printf("Argument %d is %s\n",1, clargs[i]);
(dbx) step
Argument 0 is gdb is a better debugger

You can also use step n to execute 7 lines. The for loop has been executed once, but
tha.t 1s expected because the while loop was not executed at all. We now quit dbx with
quit, and then make these changes to lines 5 and 11 with the vi or emacs editor:

#define DELIM " \n\t\r"

et Introduce a space before \n

Instead of n = 0;

Altematively, we could have edited the source file itself with the edi t command without
leaving dbx. Don’t forget to compile the program with the -g option of the compiler.
When you trace the variable n (next topic), you’ll find that both loops work properly.

Tracing a Variable

The trace command displays information about an event. It often produces a lot of
output, but we can use trace selectively to trace a variable or a function. Enter the
debugger once more with dbx a.out and find out how trace is used:

Chapter 16: Program Development Tools 499

(dbx) help trace

trace at <line#> # Trace given source line

trace in <func> # Trace calls to and returns from the given function
trace change <var> # Trace changes to the variable
When the specified event occurs, a "trace" is printed.

Let’s now place a trace on the variable n. The next run command shows three iterations
of the while loop and four of the for loop:

(dbx) trace change n

(2) trace change n -in main

(dbx) run

Running: a.out

(process id 1603)

initially (at line "parsestring.c":12): n = -4260708
after line "parsestring.c":11: n =1

Enter a multiword string: But X/Open requires dbx

after Tine "parsestring.c":18: n = 2 while loop
after line "parsestring.c":18: n =3 is executed
after line "parsestring.c":18: n = 4 three times
Argument 0 is But for loop
Argument 1 is X/Open is executed
Argument 2 is requires four
Argument 3 is dbx times
execution completed, exit code is 1

(dbx) quit

$

Now that both loops are working properly, you can run the program without using dbx.
Once you are satisified with the behavior of the program, recompile it without the
-g option.

Before we close, let’s briefly examine the other mode of this debugger. dbx can
also work in post-mortem mode. When a program crashes, the operating system saves
the memory image of the program at the time of the crash in a file named core. dbx can
be used to analyze this file to determine the cause of the crash, often by identifying the
signal that was generated at that time.

SUMMARY

A C program is compiled and assembled to create an object (.0) file and linked to create the
executable. Object files should be retained for multisource programs to avoid recompilation
of unchanged sources. Functions should be placed in separate files to be reusable.

make monitors the last modification times of the executable, object, source, and
header files to determine the sources that need to be recompiled. It looks up a makefile
for associating a target with a dependency, and then takes a defined action if the
dependency is found to be newer than target.

500

Your UNIX: The Ultimate Guide

The ar command combines a group of object files into a static library or archive,
make can automatically recompile a module and replace it in the archive. A shared
library or shared object is not linked to the executable but is loaded during runtime.

The Source Code Control System (SCCS) saves the first version in full and its
differences with subsequent versions in an encoded SCCS file. A delta (version) is checked
out (get) and checked in (delta) after editing. Revision of an intermediate version
creates a branch delta. The admin command is used both for creation of an SCCS file
and access control.

The Revision Control System (RCS) saves the latest revision. A revision is checked
in with ¢i and checked out with co. The rcs command controls version locking, user
access and is also used to remove versions.

dbx is used for analyzing core dumps and for debugging programs. You can set
breakpoints (stop) and execute one statement at a time (step). A variable can be displayed
(print) and reassigned in the debugger itself (assign). You can also trace a variable and
display its value whenever it is encountered (trace). GNU gdb is also a powerful debugger.

SELF-TEST

16.1 Name the three phases a program has to go through before an executable is
created from it.

16.2 Name the two commands invoked by the ¢c command to create an executable.

16.3 Place the function definitions of arg_check and quit (76.1.1) in a single file,
foo.c. Can the main program, rec_deposit (in rec_deposit.c), access them?

16.4 Why does a static library have the 1ib prefix? What suffix does it have? Where
are the system’s library and include files available?

16.5 The command cc -¢ foo.c compiles without error. Explain why make could
still generate an error with a makefile that contains the following entry:

foo.o: foo.c
cc -c foo.c

16.6 How is 1ibc.a different from other libraries?

16.7 Mention two advantages a shared library has over a static library.

16.8 Create a file foo containing a line of text. Mention the commands needed to
(1) create the SCCS file for foo, (ii) check out an editable version of foo, (iii) check
in foo after editing.

16.9 Look up the man page of scesdiff, and then create two deltas of a file. How
will you use the command to display their differences?

16.10 Why do we enter comments when using the delta command? How can we
see them?

16.11 Explain when you need to create a branch delta. Is 1.2.1 a branch delta?

EXERCISES

16.1 How does an executable C program differ from its associated object files?
16.2 It makes no sense to save object files if other programs are not going to use
them. Right or wrong?

Chapter 16: Program Development Tools 501

16.3
16.4

16.5

16.6

16.7

16.8

16.9

16.10

16.11

16.12

16.13

16.14

Explain the significance of the -c, -0, -1, and -g options of the C compiler.
Modify the application presented in Section 16.1.2 to implement the following:

(i) The compute function should be in a separate file, compute.c, and its
include statement in compute.h.
(ii) All function prototypes should be defined in a single file, prototype.h.

Modify makefile2 discussed in Section 16.2.2 accordingly.

Look up the man page of make to find out how it can be invoked to display the
command line that it would execute without actually executing it.

Explain how make may run without error with a makefile that contains only the
following entry. What command will it run?

foo:

A make rule doesn’t always have a dependency, and the target need not be a disk
file. Explain with an example of a makefile entry.

Specify the commands that will (i) create an archive named foobar. a containing
the object files fool.o and foo2.o, (ii) delete foo2.0 from the archive. Can
this archive be used with the -1 option to cc?

What does this entry in a makefile mean? What command does make run if a.h
is modified?

foo.a(a.o): a.h

SCCS and RCS basically use the same mechanism to store file versions, but
they work in opposite directions. Explain. Which system do you think reconstructs
a version faster?

You have three versions of a program named fool.c, fee2.c, and foo3.c.
Mention the steps needed to check in all three versions to a single SCCS file.
Mention the set of commands that produce the deltas 1.1, 1.2, 1.3, and 1.2.1.1 of
foo.c. Now use get -r9 s.foo.c and get -e -r9 s. foo. c. What do you observe?
Which file does sact obtain activity information from? When is the file created
and deleted?

You checked out a delta with get -e s. f00. ¢ and then realized that you shouldn’t
have done so. What should you do now and why?

532

Your UNIX: The Ultimate Guide

FIGURE 17.10 atimemtime.c

/* Program: atimemtime.c --
Sets a file's time stamps to those of another file */

#include <sys/stat.h>
#include <fcntl.h>
#include <utime.h> /* For struct utimbuf */
int main(int argc, char **argv) {

struct stat statbuf; /* To obtain time stamps for an existing file */

struct utimbuf timebuf; /* To set time stamps for another file */

arg_check(3, argc, "Two filenames required\n”, 1)

if (Istat(argv[1], &statbuf) == -1)
quit("stat", 1);

t?mebuf.actime = statbuf.st_atime; /* Setting members of timebuf with */
timebuf.modtime = statbuf.st mtime; /* values obtained from statbuf */

if (open{argv[2], O_RDWR | O_CREAT, 0644) == -1)
quit("open", 2);

close(argv[2]); /* Previously used open only to create it */

if (utime(argv[2], &timebuf) == -1) /* Sets both time stamps for file */
quit("utime", 3); /* that was just created */

exit(0);

The last access time for this fi

$ mv a.out $HOME; cd ; a.out .profile .logintime

$ 1s -1 .logintime ; 1s -1u .logintime

-rw-r--r-- 1 sumit staff 0 Dec 12 20:14 .logintime
=rW-r--r-- 1 sumit staff 0 Feb 2 12:33 .logintime

Note that the time stamps for the two fi
done something that we couldn’t do using UNIX commands and the shell.

le (obtained with 1s -Tu)is generall i

. a . tair y the time we logged
in, and it’s ’a good idea to save this time by creating another file with identical time
stamps. We’ll move the a.out executable to the home directory before running it:

les are identical. Using a C program, we have

Chapter 17: Systems Programming I—Files 533

You can now start writing programs that use these system calls. But we still have
some way to go. We must be able to create processes, run programs in them, open files
in one process, and pass on the descriptors to the child. We also need to manipulate
these descriptors to implement redirection and piping. The programmer’s view of the
process is presented in Chapter 18.

SUMMARY

A system call is a routine built in the kernel to perform a function that requires
communication with the hardware. It switches the CPU to kernel mode from user mode.
Library functions are built on top of the system calls.

When a system calls returns an error (often, -1), it sets a global variable, errno, to
an integer whose associated text can be printed with perror.

open returns a file descriptor that is used by the other I/O calls. It sets the opening
mode (read, write, etc.) and status flags that can create (O_CREAT) or truncate (O_TRUNC)
a file or allow data to be appended (0_APPEND).

read and write use a buffer whose size should be set equal to the size of the
kernel buffer for best performance. 1seek moves the file offset pointer, and can take it
beyond EOF to create a sparse file. Unlike read, wri te returns immediately even though
the actual writing can take place later.

File permissions specified with open are modified by either the shell’s umask
setting or a previous umask system call. umask returns the previous value of the mask.

Directories are usually handled with library functions because of the nonstandard
format of the directory structure. opendir returns a pointer to a DIR structure that is
used by readdir to read a directory entry. readdir returns a pointer to a dirent structure
that contains the filename and inode number as its members. chdir changes the current
directory and getewd returns the pathname of the current directory.

Files can be hard linked (1ink) and symbolically linked (sym11ink), but unTink
removes both. When unlink is invoked on an open file, the kernel removes the directory
entry, but its data blocks are deallocated only when the file is closed.

The inode information is maintained in the stat structure which is populated by
stat, 1stat, and fstat. The file type and its permissions are maintained in a single
field, st_mode, which can be split into separate components using the S_IFMT mask.
The S_ISxxx macros can be used to test for specific file types.

access tests a file’s access rights (which includes the test for its existence) using
the real UID and real GID of the process.

The chmod and chown calls do the same jobs as their command counterparts. utime
is used to set a file’s access and modification time stamps using a structure of type ut imbuf.

SELF-TEST

Use system calls wherever possible. However, you may use printf, perror, and the

directory handling library functions.

17.1 Explain the difference between system calls and library functions. What happens
in the CPU when a system call is invoked?

534

Your UNIX: The Ultimate Guide

17.2 Why must we immediately check the value of errno after a system call fails
rather than later? ,

17.3 What is a file descriptor; and what is it used for?

7.4 Check the man pages of open, dup, dup?2, pipe, and fentl, and see if you find
anything they have in common.

17.5 Write a program that ascertains the size of the file descriptor table by opening a
file repeatedly. Display the cause of the error that led to the aborting of the program,

17.6 Specify how the open call can be used to emulate the function performed by the
shell’s (i) >, (ii) >> symbols.

177 Group the following symbolic constants into two categories and explain the
significance of the categories: (i) O_RDONLY, (ii) 0_CREAT, (iii) 0 SYNC, (iv) 0_RDWR,
(v) O_TRUNC, (vi) O_APPEND, (vii) 0_WRONLY. What is the role of the 0 SYNC flag
when using write? N

17.8 Write a program that uses a filename as argument and display its contents in
uppercase.

17.9 Write a program that (i) creates a file foo with permissions 666 and a directory
bar with permissions 777, (ii) removes foo and bar.

17.10 Write a program that accepts a directory name as argument and creates it if it
doesn’t already exist. If there is an ordinary file by that name, then the program
should remove it before creating the directory.

17.11 Write a program that accepts a directory name as argument, changes to that
directory, and displays its absolute pathname. Is the change permanent?

17.12 Write a program that lists from the current directory all ordinary filenames whose
size exceeds 100,000 bytes. It should also remove all zero-sized files.

17.13 Write a program that sets the user mask to zero before creating a file foo. Now,
change the permissions of foo to (i) 764, (ii) 440. The previous value of the
mask should be restored before program termination.

EXERCISES

Use system calls wherever possible. However, you may use printf, perror, strerror,
and the directory handling library Sfunctions.

171

17.2

17.3

17.4

17.5

Look up the man page of strerror before you write a program that prints all
possible error numbers and their corresponding text as shown in Table 17.1. The
number of error messages on your system is held in the extern variable, sys nerr.
Explain what an atomic operation is. Specify the statement that opens a file and
(i) truncates it if it exists, (ii) creates it if it doesn’t. What is the advantage of using
open (o create a file instead of creat which is designed only for that purpose?
Write a program that copies a file using the source and destination as arguments.
The destination can also be a directory.

Modify the program in 17.8 (Self-Test) so that the output is displayed in lowercase
when invoked by the name 1ower, and uppercase when invoked as upper. What
else do you need to do to run it?

Explain why the selection of the buffer size used by read and wri te is crucial in
writing efficient programs.

Chapter 17: Systems Programming I—Files 535

17.6

17.7

17.8

17.9

17.10

17.11

17.12

17.13

17.14

17.15

Write two programs that read /etc/passwd using (i) a single-character buffer,
(ii) a buffer of 2048 bytes with read. Use the time command with each and
compare their performance.

Write a program that displays the current value of the user mask but leaves it
unchanged.

Using access, devise an advisory locking mechanism which allows two programs,
Tockl.c and lock2.c, to read a file foo only if the file . Tockfile doesn’t
exist. Both programs will first create the lock file if it doesn’t exist, and remove
it before termination.

Write a program to split the contents of a file specified as argument into multiple
files so that each file contains at most 10,000 bytes. Name the files foo.1, f00.2,
and so forth if foo is the argument.

Write a program that uses error checking to perform the following on an existing
file foo: (i) opens foo and then deletes it without closing it, (ii) reads foo and
displays its output, (iii) opens foo again. After the program has completed
execution, check whether foo has actually been deleted. Explain your observations
with reference to the behavior of the unlink system call.

Write a program that moves a group of ordinary files to a directory. The filenames
are provided as arguments, and the last argument is a directory. Provide adequate
checks to ensure that the files exist as ordinary files and the directory is created
if it doesn’t exist.

Write a program that does the following: (i) creates a file foo with permissions
644, (ii) assigns write permission to the group, (iii) removes the read permission
from others. Look up the system library function, and use it to display the listing
at each stage.

Write a program that removes the read, write, and execute permissions for others
for all files in the current directory that are owned by the user running the program.
(HINT: Use getuid to obtain your own UID.)

Write a program to create a file fool with the same permissions, modification
time, and access time as another file, f002.

Write a program that uses a filename as argument and checks each of the 12
permission bits. The program should display a message if the bit is set. For
instance, if the user has read permission, then it should display User-readable.
Develop the code in a modular manner using two separate functions, A and B:

(i) A will populate a stat structure with the attributes of the file and print its
permissions in octal format as a 4-character string.

(ii) B will extract each permission bit from stat.st mode and then print a
message like User-readable if the respective bit is set.

568

Your UNIX: The Ultimate Guide

To understand how the program works, let’s first examine the sequence of
s.tatements that are executed in the child process. We first close fd[0], the read end
since the child writes (not reads) to the pipe. Next, we replicate fd[1] with dup2 to giv, ,
us the descriptor used by standard output. At this stage, the file descriptor for standarfl
output points to the write end of the pipe. This means we don’t need the original descripto
(fd[1]) that was connected to the same end of the pipe. P

. Having now closed both the original read and write ends of the pipe, we are left

with only the descriptor for standard output that is now connected to the pipe’s write
end. Invoking execvp to run the cat command ensures that cat’s output is connected to
the pipe’s write end.
. 'If we apply a similar line of reasoning to the statements in the parent, we’ll end up
In a situation where the standard input of tr is connected to the read end of the pipe. We
have been able to establish a pipeline between cat and tr. On running the program, you
should see the entries in /etc/hosts.equiv, but after conversion to uppercase: ,

$ a.out
SATURN
EARTH
MERCURY
JUPITER

Compare this output with that obtained from the program, reverse_read.c (Fig. 17.3)
which displayed the contents of /etc/hosts. equiv in reverse order. o

Two processes can use a pipe for communication only if they share a common
ancestor. Bl.lt UNIX also supports named pipes and sockets for two unrelated processes
to communicate with each other. Besides, SVR4 offers semaphores, shared memory,
and message queues as advanced forms of IPC. Space constraints don’t permit inclusior’l
of these topics, but you have a lot to explore on your own.

SUMMARY

A process runs in its own virtual address space comprising the text, data, and stack. Part
of the process address space is also reserved for the kernel.

.The process table contains all control information related to a process. The table
contains both the pending signals mask and the signal disposition for every signal that
the process may receive.

The environment variables are available in the variable, environ[]. A variable
can be set with setenv or putenv and retrieved with getenv.

The fork system call creates a process by replicating the existing address space.
fork returns twice—zero in the child and its own PID in the parent. The exec family
replaces the complete address space of the current process with that of a new program
Shell and per1 scripts can be run by exec1p and execvp. A successful exec doesn’t retum:

' A process exits by invoking exit with an argument that represents the exir status.
This ngmber 1s retrieved by the parent with wait or wai tpid. Unlike wait, waitpid
can wait for a specific child to die and also need not block till the child dies.’

Chapter 18: Systems Programming II-—Process Control 569

If the parent dies before the child, the child turns into an orphan, which is
immediately adopted by init. If the parent is alive but doesn’t invoke wai t, the child is
transformed into a zombie. A zombie is a dead process whose address space has been
freed but not the entry in the process table.

The kernel maintains three tables in memory when a file is opened. The file
descriptor table stores all open descriptors. The file table stores the opening mode,
status flags and file offset. The vnode table contains the inode information. A table is
not freed until its reference count drops to zero. A forked child process inherits the
descriptors but shares the file table.

dup replicates a file descriptor and returns the lowest unallocated value. dup2
allows us to choose the descriptor we want by closing it if it is already open. In either
case, original and copy both share the same file table. POSIX recommends the use of
fentl rather than these two calls.

A signal makes a process aware of the occurrence of an event. The process may
allow the default disposition to occur, ignore the signal, or invoke a signal handler. A
handler is installed with sigaction. The signals SIGKILL and SIGSTOP can’t be caught.

pipe creates a buffered object that returns two file descriptors. Data written to
one descriptor is read back from the other. To create a pipeline of two commands, you
need to create a pipe before invoking fork.

SELF-TEST

18.1 Why do we say that the address space of a process is virtual? Which segment of
the address space do you think is loaded from the program file?

18.2 When and why does a process voluntarily relinquish control of the CPU?

18.3 What is the value returned by fork? Why was it designed to behave that way?

184 Name the system calls discussed in this chapter that return one or more file descriptors.

18.5 Write a program that forks twice. Display the PIDs and PPIDs of all three processes.

18.6 Write a program that executes the command we -1 -¢ /etc/passwd using
(1) execl, (ii) execv. What changes do you need to make if you use exec1p and
execvp instead?

18.7 Is it necessary for the parent to wait for the death of the child? What happens if
it doesn’t?

18.8 Write a program that accepts two small numbers (< 50) as arguments and then
sums the two in a child process. The sum should be returned by the child to the
parent as its exit status, and the parent should print the sum.

18.9 Write a shell script containing only one statement: exit 123456. Run the script
and then invoke echo $? from the shell. Explain why the value provided in the
script is different from the output.

18.10 A file may have more than one vnode table in memory. True or false?

18.11 Write a program that uses write to output the message hello dolly to the
standard error. Manipulate the file descriptors so that this message can be saved
by using a.out > foo rather than a.out 2>foo.

18.12 Why can’t a background process be terminated with the interrupt key?

™

570

Your UNIX: The Ultimate Guide

18.13 Use the ki1l command to find the number of signals available on your system

and then write a program that ignores all of them. Is it possible to do so?

18.14 Explain why a pipe can connect two related processes only.

EXERCISES

18.1

18.2

18.3

18.4
18.5

18.6

18.7

18.8

18.9

18.10

18.11
18.12

18.13

18.14

What is the significance of the stack and heap segments in the address space of
a process?

View the man page of size, and then run the command on any executable like
/bin/cat. Explain the significance of the output columns.

What is the role of the Memory Management Unit in process switching. Why
can’t one process corrupt the address space of another?

Write a program that displays all environment variables.

Write a program that sets an int variable x to 100 before forking a child. Next
perform the following in the child and parent:

Child:

(i) Display the value of x, reset it to 200, and display it again.
(ii) Display the value of PATH, reset it to only ., and display it again.
(iii) Change the current directory to /etc and display the absolute pathname
of the changed directory.

Parent:

(i) Sleep for 2 seconds.
(ii) Display the value of x, PATH, and the pathname of the current directory.

Explain your observations. Why was the parent made to sleep for two seconds?
Redirect the output of fork.c (Fig. 18.3) to a file and explain the change in behavior.
Create a shell script that prints the values of HOME, PATH, MAIL, and TERM. Next,
write a program that uses exec to run this script so that it prints null values for
MAIL and TERM.

Explain which of these process attributes change with a fork and exec: (i) PID,
(ii) PPID, (iii) file descriptors, (iv) standard 1/0 buffers.

The completion of process execution doesn’t mean that the process is dead. True
or false?

Write a program where the parent dies after creating a child. Display the value
of the PPID in the child. Explain your observations.

Why are the attributes of an open file held in two tables rather than one?

Does each entry in the file descriptor table have a separate file table associated
with it?

What are the structural changes that take place in memory when (i) a file is
opened twice, (ii) its descriptor is replicated. In how many ways can you replicate
the descriptor?

Modify the program in 18.8 (SELF-TEST) so that process A creates B and B
creates C. The summation should be performed in C and the result returned to B
as the exit status. B should double the summed value and return the product to A
as the exit status. Will the program work with large numbers?

;(Chaptef 18: Systems Programming II—Process Control

18.15

18.16
18.17

18.18

18.19

18.20

571

Name two advantages waitpid has over wait. How do you use waitpid to
emulate the behavior of wait?

Explain how the kernel treats zombies and orphans.

Write a program that repeatedly prints the She 11> prompt to accept a UNIX comrpand
as argument. The command line, which can’t contain shell metacharacters, will be
executed by an exec function. The program will terminate when the user ent.ers
exi't. Also try running the program with some of the shell’s internal commands (like
umask) and explain your observations.

Look up the man page for any shell and understand the signiﬁc.anc'e of the -¢
option. Next, write a program that prompts for a command, which is e).iecuted
with exec and sh -c. Try using the program with both external and internal
(shell) commands. Does this program behave properly, even when using wild
cards and pipes? . .
In what ways can a process behave when it receives a signal? What is special
about the SIGSTOP and SIGKILL signals?

Invoke the command vi foo &, and explain why you can’t input text to the editor.

598

19.13.3

19.13.4

Your UNIX: The Ultimate Guide

Displaying the Archive (-t)
The -t key option displays the contents of the device in a long format similar to the
listing:

tar -tvf /dev/rdsk/f0ql8dt

rwxr-xr-x 203/50 472 Jun 4 09:35 1991 ./dentryl.sh
rwxr-xr-x 203/50 554 Jun 4 09:52 1991 ./dentry2.sh
rwxr-xr-x 203/50 2229 Jun 4 13:59 1991 ./func.sh

The files here have been backed up with relative pathnames. Each filename here is
preceded by ./. If you don’t remember this but want to extract the file func.sh from
the diskette, you’ll probably first try this:

tar -xvf /dev/rdsk/f0ql8dt func.sh
tar: func.sh: Not found in archive

tar failed to find the file because it existed there as ./func.sh and not func.sh. Put
the . / before the filename, and you are sure to get it this time. Remember this whenever
you encounter extraction errors as above.

Other Options
There are a number of other options of tar that are worth considering:

* The -r key option is used to append a file to an archive. This implies that an
archive can contain several versions of the same file!

* The -u key option also adds a file to an archive but only if the file is not already
there or is being replaced with a newer version.

* The -w option permits interactive copying and restoration. It prints the name of the
file and prompts for the action to be taken (y or n).

* Some versions of tar use a special option to pick up filenames from a file. You
might want to use this facility when you have a list of over a hundred files, which
is impractical (and sometimes, impossible) to enter in the command line.
Unfortunately, this option is not standard; Solaris uses -1 and Linux uses -T.

The GNU tar command is more powerful than its System V counterpart and supports
a host of exclusive options. Unfortunately, there is sometimes a mismatch with the
options used by Systern V. The -M option'is used for a multivolume backup (e.g.,
tar -cvf /dev/fdOH1440 -M *). There are two options (-z and -Z) related to
compression that we have already discussed (3.22—Linux).

SUMMARY

The system administrator or superuser uses the root user account, though any user can
also invoke su to acquire superuser powers. The superuser can change the attributes of

any file, kill any process, and change any user’s password. The current directory doesn’t
feature in PATH.

Chapter 19: System Administration 599

A user is identified by the UID and GID, and root has 0 as the UID. A user can be
added (useradd), modified (usermod), and removed from the system (userdel). User
details are maintained in /etc/passwd and /etc/group. The password is stored in an
encrypted manner in /etc/shadow.

For enforcing security, the administrator may assign a restricted shell so the user
can execute only a fixed set of commands. The set-user-id (SUID) bit of a program
makes its process run with the powers of the program’s owner. The sticky bit set on a
directory allows users to create and remove files owned by them in that directory, but
not remove or edit files belonging to others.

During system startup, the init process reads /etc/inittab to run getty at all
terminals and the system’s rc scripts. These scripts mount file systems and start the system’s
daemons. init also becomes the parent of all login shells. shutdown uses init to kill all
processes, unmount file systems, and write file system information to disk.

Devices can be block special (which use the buffer cache) or character special
(which don’t). A device file is also represented by a major number which represents the
device driver, and minor number which signifies the parameters passed to the device
driver. The same device can often be accessed with different filenames.

A UNIX file system comprises the boot block, superblock, inode, and data blocks.
The superblock contains global information on the file system, including details of free
inodes and data blocks. The memory copies of the superblock and inodes are regularly
written to disk by the update daecmon which calls sync.

Most systems today use the ufs file system which permit multiple superblocks,
symbolic links and disk quotas. Linux uses the ext2 and ext3 file systems. There are
different file system types for CD-ROMs (hsfs or is09660), DOS disks (pcfs, vfat, or
msdos), and a pseudo-file system for processes (proc or procfs).

A file system is unknown to the root file system until it is mounted (mount). umount
unmounts file systems but only from above the mount point. fsck checks the integrity
of file systems.

The administrator has to monitor the disk usage and ensure that adequate free
space is available. df displays the free disk space for each file system. du lists the
detailed usage of each file or directory. The administrator also uses find to locate large
files (-size).

Floppy diskettes have to be formatted (format or fdformat) before they can be
used. dd uses a character device to copy diskettes and tapes. UNIX provides an entire
group of commands to handle DOS diskettes. Their names begin with the string dos
(SVR4) or m (Linux).

tar is suitable for backing up a directory tree. It uses key options for copying to
the media (-c), restoring from it (-x), and displaying the archive (-t). GNU tar adds
compression to the archiving activity.

SELF-TEST

19.1 Where are the administrator’s commands primarily located? Which directory is not
found in the administrator’s PATH even though nonprivileged users have it in theirs?

19.2 How does the behavior of the passwd command change when invoked by the
superuser?

600

Your UNIX: The Ultimate Guide

19.3 Two shell variables are assigned by login after reading /etc/passwd. What
are they?

19.4 Specify the command line that changes romeo’s shell from /bin/csh to /bin/bash.

19.5 Why was the password encryption moved from /etc/passwd to /etc/shadow?

19.6 A user after logging in is unable to change directories or create files in her home
directory. How can this happen?

19.7 The letters s and t were seen in the permissions field of a listing. What do they
indicate?

19.8 Explain the mechanism used by 1s to display the name of the owner and group
owner in the listing.

19.9 How will you use find to locate all SUID programs in /bin and /usr/bin?

19.10 What is meant by run level? How do you display the run level for your system?

19.11 Which file does init take its instructions from? How are the changes made to
that file activated?

19.12 Name some services that are not available when the machine is in single-user mode.

19.13 How will you use shutdown to bring down the system immediately? What shortcut
does Linux offer?

19.14 Mention the significance of the boot and swap file systems.

19.15 Which file system can’t be unmounted and why?

19.16 What is the fsck command used for?

19.17 What is the difference between the find options ~perm 1000 and -perm -10007

19.18 How can the system administrator arrange to monitor the free disk space every
hour on a working day between 9 a.m. and 10 p.m.?

19.19 How will you find out the total disk usage of the current directory tree?

19.20 How do you copy all HTML files to a DOS floppy in (i) SVR4, (ii) Linux?

19.21 The command tar xvf /dev/fd0 *.c displays an error message even though
the diskette contains a number of . ¢ files. Explain the two ways that can lead to
the message.

EXERCISES

19.1 Why is the su command terminated with exit? What is the difference between
su and su - romeo?

19.2 Name five administrative functions that can’t be performed by a nonprivileged user.

19.3 Look up the man page of passwd to find out how the command can be used to
change the password every four weeks.

19.4 How can you create another user with the same powers as root?

19.5 Specify the command lines needed to create a user john with UID 212 and
GID dialout (a new group). john will use Bash as his shell and be placed in the
/home directory. How can you later change john’s shell to Korn without editing
/etc/passwd?

19.6 A user romeo belongs to the student group and yet /etc/group doesn’t show
his name beside the group name. What does that indicate?

19.7 Name five features of the restricted shell.

19.8

19.9

19.10

19.11

19.12

19.13

19.14

19.15
19.16
19.17
19.18

19.19
19.20
19.21

19.22

| Chapter 19: System Administration 601

How is a user able to update /etc/shadow with passwd even though the file
doesn’t have write permission?
How will you arrange for a group of users to write to the same directory and yet
not be able to remove one another’s files?
What are the two important functions of 1nit? Explain how the shell process is
created.

How do you determine the default run level? What is the difference between run
levels 0 and 67

What is the significance of the start and kill scripts? How are they organized on
(i) an SVR4 system, (ii) Linux? o '
Write a shell script that shows whether the printer daemon is running irrespective
of whether the system is using SVR4 or Linux.

Explain what these commands do:

(i) find / -perm -4000 -print
(i) find / -type d -perm -1000 -exec 1s -1d a\;
(iii) find / -type f -size +2048 -mtime +365 -print

Why do we install the UNIX system on multiple partitions?

What is meant by mounting? When is unmounting of a file system not possible?
How do UNIX systems counter superblock corruption?

Discuss the role of the sync command in maintaining the system in a consistent
state. When must you not use sync?

Name the important features of the ufs file system. What is the significance of
the proc file system?

Write a shell script to copy a floppy diskette. .
Specify the tar command line that (i) prevents files from being overwn.tten
during restoration, (ii) renames each file interactively during restoration,
(iii) appends to an existing archive during copying.

You need to back up all files that you have worked with today. How do you plan
the backup activity using tar?

