
Lighting

• So…given a 3-D triangle and a 3-D 
viewpoint, we can set the right pixels

• But what color should those pixels be?

• If we’re attempting to create a realistic 
image, we need to simulate the lighting of 
the surfaces in the scene

– Fundamentally simulation of physics and optics

– As you’ll see, we use a lot of approximations to 
do this simulation fast enough



Shading Model

The shading model calculates the brightness and color to display 

for a point on a visible surface.

The model is approximate – a compromise between accuracy 

and cost of computing.



Definitions

• Illumination: the transport of energy (in particular, the 

luminous flux of visible light) from light sources to surfaces 

& points

– Note: includes direct and indirect illumination

• Lighting: the process of computing the luminous intensity 

(i.e., outgoing light) at a particular 3-D point, usually on a 

surface

• Shading: the process of assigning colors to pixels



Definitions

• Illumination models fall into two categories:

– Empirical: simple formulations that approximate observed 

phenomenon

– Physically-based: models based on the actual physics of light 

interacting with matter

• We mostly use empirical models in interactive graphics for 

simplicity

• Increasingly, realistic graphics are using physically-based 

models 



Components of Illumination

• Two components of illumination: light sources and surface 

properties

• Light sources 

– Optical attributes (i.e, color of the light)

– Geometric attributes

• Position

• Direction

• Shape

– Directional attenuation



Components of Illumination

• Surface properties

– Optical properties (i.e., color of the surface)

– Geometric attributes

• Position

• Orientation

• Micro-structure

• Common simplifications in interactive graphics

– Only direct illumination from emitters to surfaces

– Simplify geometry of emitters to trivial cases



Light Sources

1. Light-emitting  (light bulbs, sun)

2. Light-reflecting (illuminated surfaces of objects such as walls)



Ambient Light Sources

• Objects not directly lit are typically still visible

– E.g., the ceiling in this room, undersides of desks

• This is the result of indirect illumination from emitters, bouncing off 

intermediate surfaces

• Too expensive to calculate (in real time), so we use a model called 

an ambient light source

– No spatial or directional characteristics; illuminates all surfaces equally

– Amount reflected depends on surface properties



Ambient Light Sources

• For each sampled wavelength, the ambient light reflected 

from a surface depends on

– The surface properties, kambient

– The intensity of the ambient light source (constant for all points 

on all surfaces )

Ireflected = kambient Iambient



Ambient Light Sources

• A scene lit only with an ambient light source:



Directional Light Sources

• For a directional light source we make the simplifying assumption 

that all rays of light from the source are parallel

– As if the source is infinitely far away 

from the surfaces in the scene

– A good approximation to sunlight

• The direction from a surface to the light source is important in 

lighting the surface

• With a directional light source, this direction is constant for all 

surfaces in the scene



Directional Light Sources

• The same scene lit with a directional and an ambient light 

source



Point Light Sources

• A point light source emits light equally in all directions 

from a single point 

• The direction to the light from a point on a surface thus 

differs for different points:

– So we need to calculate a 

normalized vector to the light 

source for every point we light:
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Point Light Sources

• Using an ambient and a point light source:



Other Light Sources

• Spotlights are point sources whose intensity falls off 

directionally.  

– Requires color, point

direction, falloff

parameters

– Supported by OpenGL



Other Light Sources

• Area light sources define a 2-D emissive surface (usually a 

disc or polygon)

– Good example: fluorescent light panels

– Capable of generating soft shadows (why? )



The Physics of Reflection

• Ideal diffuse reflection

– An ideal diffuse reflector, at the microscopic level, is a 
very rough surface (real-world example: chalk)  

– Because of these microscopic variations, an incoming 
ray of light is equally likely to be reflected in any 
direction over the hemisphere:



Lambert’s Cosine Law

• Ideal diffuse surfaces reflect according to Lambert’s cosine law:

The energy reflected by a small portion of a surface from a light source in a given direction is 

proportional to the cosine of the angle between that direction and the surface normal

• These are often called Lambertian surfaces

• Note that the reflected intensity is independent of the viewing 

direction, but does depend on the surface orientation with regard 

to the light source



Lambert’s Law



Computing Diffuse Reflection

• The angle between the surface normal and the incoming 
light is the angle of incidence:

Idiffuse = kd Ilight cos 

• In practice we use vector arithmetic:

Idiffuse = kd Ilight (n • l)

nl





Diffuse Lighting Examples

• We need only consider angles from 0° to 90° (Why?)

• A Lambertian sphere seen at several different lighting 

angles:



Attenuation: Distance

• fatt models distance from light

– Idiffuse = kd fatt Ilight (n • l)

• Realistic

– fatt = 1/(dlight)
2

• Hard to control, so use

– fatt= 1/(c1 + c2dlight + c3dlight
2)



Specular Reflection

• Shiny surfaces exhibit specular reflection

– Polished metal

– Glossy car finish

• A light shining on a specular surface causes a bright spot 

known as a specular highlight

• Where these highlights appear is a function of the viewer’s 

position, so specular reflectance is view-dependent



The Physics of Reflection

• At the microscopic level a specular reflecting surface is 

very smooth

• Thus rays of light are likely to bounce off the 

microgeometry in a mirror-like fashion

• The smoother the surface, the closer it becomes to a perfect 

mirror



The Optics of Reflection

• Reflection follows Snell’s Laws:

– The incoming ray and reflected ray lie in a plane with the surface 

normal

– The angle that the reflected ray forms with the surface normal 

equals the angle formed by the incoming ray and the surface 

normal:

(l)ight = (r)eflection



Non-Ideal Specular Reflectance

• Snell’s law applies to perfect mirror-like surfaces, 

but aside from mirrors (and chrome) few surfaces 

exhibit perfect specularity

• How can we capture the “softer” reflections of 

surface that are glossy rather than mirror-like?

• One option: model the microgeometry of the 

surface and explicitly bounce rays off of it

• Or… 



Non-Ideal Specular Reflectance: An 

Empirical Approximation

• In general, we expect most reflected light to travel in 

direction predicted by Snell’s Law

• But because of microscopic surface variations, some light 

may be reflected in a direction slightly off the ideal 

reflected ray

• As the angle from the ideal reflected ray increases, we 

expect less light to be reflected



Non-Ideal Specular Reflectance: An 

Empirical Approximation

An illustration of this angular falloff:

How might we model this falloff?



Phong Lighting

• The most common lighting model in 

computer graphics was suggested by Phong:

( )cos shinyn
specular s lightI k I =

• The nshiny term is a purely 

empirical constant that varies the 

rate of falloff

• Though this model has no 

physical basis, it works (sort of) 

in practice

v



Phong Lighting: The nshiny Term

• This diagram shows how the Phong reflectance term drops off with 

divergence of the viewing angle from the ideal reflected ray:

• What does this term control, visually?



Calculating Phong Lighting

• The cos term of Phong lighting can be computed using 

vector arithmetic:

– V is the unit vector towards the viewer

– R is the ideal reflectance direction

• An aside: we can efficiently calculate R

( ) shinyn

lightsspecular RVIkI ˆˆ =

( )( ) LNLNR ˆˆˆˆ2ˆ −=



Calculating The R Vector

• This is illustrated below:

( )( ) LNLNR ˆˆˆˆ2ˆ −=

( )( )NLNLR ˆˆˆ2ˆˆ =+



Phong Examples

• These spheres illustrate the Phong model as L and nshiny are 

varied:



The Phong Lighting Model

• Let’s combine ambient, diffuse, and specular components:

• Commonly called Phong lighting

– Note: once per light

– Note: once per color component

– Do ka, kd, and ks vary with color component?
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Phong Lighting: Intensity Plots



Applying Illumination

• We now have an illumination model for a point on a surface

• Assuming that our surface is defined as a mesh of polygonal 

facets, which points should we use? 

• Keep in mind:

– It’s a fairly expensive calculation

– Several possible answers, each with different implications for the 

visual quality of the result



Applying Illumination

• With polygonal/triangular models:

– Each facet has a constant surface normal

– If the light is directional, the diffuse reflectance is constant across 

the facet



Flat Shading

• We can refine it a bit by evaluating the Phong lighting model at each 

pixel of each polygon, but the result is still clearly faceted:

• To get smoother-looking surfaces

we introduce vertex normals at each

vertex

– Usually different from facet normal

– Used only for shading

– Think of as a better approximation of the real surface that the polygons 

approximate (draw it)



Vertex Normals

• Vertex normals may be 

– Provided with the model

– Computed from first principles 

– Approximated by averaging the normals of the facets that share 

the vertex



Gouraud Shading

• This is the most common approach

– Perform Phong lighting at the vertices

– Linearly interpolate the resulting colors over faces

• Along edges

• Along scanlines

– This is what OpenGL does

• Does this eliminate the facets?



Gouraud Shading

• Artifacts

– Often appears dull, chalky

– Lacks accurate specular component

• If included, will be averaged over entire polygon

– Mach Banding (draw example)

• Artifact at discontinuities in intensity or intensity slope



Phong Shading

• Phong shading is not the same as Phong lighting, though they are 

sometimes mixed up

– Phong lighting: the empirical model we’ve been discussing to calculate 

illumination at a point on a surface

– Phong shading: linearly interpolating the surface normal across the facet, 

applying the Phong lighting model at every pixel

• Same input as Gouraud shading

• Usually very smooth-looking results:

• But, considerably more expensive



Phong Shading

• Linearly interpolate the vertex normals

– Compute lighting equations at each pixel

– Can use specular component



Shortcomings of Shading

• Polygonal silhouettes remain

• Perspective distortion not captured in 

interpolation down scanlines

• Interpolation dependent on polygon 

orientation

• Shared vertices

• Bad averaging to compute vertex normals


