U Chapter 4. lmage Frimitives and Correspondence

two image regions match perfectly. In particular, in the case of the affine model
the normalized cross-correlation becomes

ZW(w) ([l(i:) - jl) (IQ(ACZZ -+ d) — TQ)
\/ZW(a:)(Il (i’.) - jl)Q Zw/(m)(IQ(Aii + d) — j’2)2
So, we look for (A, d) = argmina 4 NCC(A, d). In Chapter 11, we will com-

bine NCC with robust statistics techniques to derive a practical algorithm that can
match features between two images with a large baseline.

NCC(A,d) = 4.27)

4.3.3 Point feature selection

In previous sections we have seen how to compute the translational or affine de-
formation of a photometric feature, and we have distinguished the case where the
computation is performed at a fixed set of locations (optical flow) from the case
where point features are tracked over time (feature tracking). One issue we have
not addressed in this second case is how to initially select the points to be tracked.
However, we have hinted on various occasions at the possibility of selecting as
“feature points” the locations that allow us to solve the correspondence problem
easily. In this section we make this more precise by giving a numerical algorithm
to select such features.

As the reader may have noticed, the description of any of those feature points
relies on knowing the gradient of the image. Hence, before we can give any nu-
merical algorithm for feature selection, the reader needs to know how to compute
the image gradient VI = [I., I,]7 in an accurate and robust way. The description
of how to compute the gradient of a discretized image is in Appendix 4.A.

The solution to the tracking or correspondence problem for the case of pure
translation relied on inverting the matrix G made of the spatial gradients of the
image (4.20). For G to be invertible, the region must have nontrivial gradients
along two independent directions, resembling therefore a “corner” structure, as
shown in Figure 4.5. Alternatively, if we regard the corner as the “intersection”

Figure 4.5. A corner feature @ is the virtual intersection of local edges (within a window).

of all the edges inside the window, then the existence of at least a corner point

4.0, Matching point ieatures 21

« = [x,y]" means that over the window W (), the following minimization has
a solution:
. . T/aNg~ 2
min E.(x)= Z [VIT(z)(z — z)]”, (4.28)
zeW ()

where V(&) is the gradient calculated at & = (&, §]7 € W (). It is then easy to
check that the existence of a local minimum for this error function is equivalent
to the summation of the outer product of the gradients, i.e.

N _ 2 Y II
Glz) = VI()VIT (&) = [2 L V| eRP2 (429
:EE;(m) () ZIZ[y ZI; ()

being nonsingular. If o2, the smallest singular value of G, is above a specified
threshold 7, then G is invertible, (4.20) can be solved, and therefore, we say that
the point x is a feature point. If both singular values of G are close to zero, the
feature window has almost constant brightness. If only one of the singular values
is close to zero, the brightness varies mostly along a single direction. In both
cases, the point cannot be localized or matched in another image. This leads to a
simple algorithm to extract point (or corner) features; see Algorithm 4.2.

Algorithm 4.2 (Corner detector).

Given an image I(z,y), follow the steps to detect whether a given pixel (z,y) is a corner
feature:

e set a threshold 7 € R and a window W of fixed size, and compute the image
gradient ([, I,,;) using the filters given in Appendix 4.A;

e at all pixels in the window W around (z, y) compute the matrix

_[X YL,
G = IATS 15 ; (4.30)
e if the smallest singular value o2(G) is bigger than the prefixed threshold 7, then
mark the pixel as a feature (or corner) point.

Although we have used the word “corner,” the reader should observe that the
test above guarantees only that the irradiance function I is “changing enough” in
two independent directions within the window of interest. Another way in which
this can happen is for the window to contain “sufficient texture,” causing enough
variation along at least two independent directions.

A variation to the above algorithm is the well-known Harris corner detector
[Harris and Stephens, 1988]. The main idea is to threshold the quantity

C(G) = det(GQ) + k x trace?(Q), (4.31)

yvhere k € R is a (usually small) scalar, and different choices of k may result
In favoring gradient variation in one or more than one direction, or maybe both.
To see this, let the two eigenvalues (which in this case coincide with the singular

Chapter 4. 1lmage Frimitives and Lorrésponaence

Figure 4.6. An example of the response of the Harris feature detector using 5 x 5 integration
windows and parameter k = 0.04. Some apparent corners around the boundary of the
image are not detected due to the size of window chosen.

values) of G be 01, 09. Then
C(G) = 0109 + k(o1 + 02)? = (1 + 2k)o102 + k(0] + 03). (4.32)

Note that if k is large and either one of the eigenvalues is large, so will be
C(G). That is, features with significant gradient variation in at least one direc-
tion will likely pass a threshold. If k is small, then both eigenvalues need to
be big enough to make C(G) pass the threshold. In this case, only the corner
feature is favored. Simple thresholding operations often do not yield satisfac-
tory results, which lead to a detection of too many corners, which are not well
localized. Partial improvements can be obtained by searching for the local min-
ima in the regions, where the response of the detector is high. Alternatively,
more sophisticated techniques can be used, which utilize contour (or edge) de-
tection techniques and indeed search for the high curvature points of the detected
contours [Wuescher and Boyer, 1991]. In Chapter 11 we will explore further de-
tails that are crucial in implementing an effective feature detection and selection
algorithm.

4.4 Tracking line features

As we will see in future chapters, besides point features, line (or edge) features,
which typically correspond to boundaries of homogeneous regions, also provide
important geometric information about the 3-D structure of objects in the scene.
In this section, we study how to extract and track such features.

+.4. lracking line features 93

4.4.1 Edge features and edge detection

As mentioned above, when the matrix ¢ in (4.29) has both singular values close to
zero, it corresponds to a textureless “blank wall.” When one of the singular values
is large and the other one is close to zero, the brightness varies mostly along a sin-
gle direction. But that does not imply a sudden change of brightness value in the
direction of the gradient. For example, an image of a shaded marble sphere does
vary in brightness, but the variation is smooth, and therefore the entire surface
is better interpreted as one smooth region instead of one with edges everywhere.
Thus, by “an edge” in an image, we typically refer to a place where there is a
distinctive “peak” in the gradient. Of course, the notion of a “peak” depends on
the resolution of the image and the size of the window chosen. What appears as
smooth shading on a small patch in a high-resolution image may appear as a sharp
discontinuity on a large patch in a subsampled image.

We therefore label a pixel as an “edge feature” only if the gradient norm
| VI]| reaches a local maximum compared to its neighboring pixels. This simple
idea results in the well-known Canny edge-detection algorithm [Canny, 1986].

Algorithm 4.3 (Canny edge detector).

Given an image I(x,y), follow the steps to detect whether a given pixel (z,y) is on an
edge

e set a threshold 7 > 0 and standard deviation o > 0 for the Gaussian function g,
used to derive the filter (see Appendix 4.A for details);

e compute the gradient vector VI = [I, Iy]T (see Appendix 4.A);

o if |[VI(z,y)||* = VITVI is a local maximum along the gradient and larger than
the prefixed threshold 7, then mark it as an edge pixel.

Figure 4.7 demonstrates edges detected by the Canny edge detector on a gray-
level image.

I];i.gure 4.7. Original image, gradient magnitude, and detected edge pixels of an image of
Instein,

378 Chapter 11. Step-by-Step Building of a 3-D Model from Images

The next sections follow the program above, with an eye toward implementation,
For the sake of completeness, the description of some of the algorithms is repeated
from previous chapters.

11.1 Feature selection

Given a collection of images, for instance a video sequence captured by a hand-
held camcorder, the first step consists of selecting candidate features in one or
more images, in preparation for tracking or matching them across different views.
For simplicity we concentrate on the case of point features, and discuss the case
of lines only briefly (the reader can refer to Chapter 4 for more details).

The quality of a point with coordinates = [z,y]” as a candidate feature can
be measured by Harris’ criterion,

C(x) = det(G) + k x trace*(G), (1L.1)

defined in Chapter 4, equation (4.31), computed on a region W (), for instance a
rectangular window centered at x, of size between 3 x 3 and 11 x 11 pixcls; we
use 7 x 7 in this example. In the above expression, k is a constant to be chosen by
the designer,” and G is a 2 x 2 matrix that depends on x, given by

Swa Lo Lwim ely 2x2
G = z e R°*4)
Ywe ely Tw I

where I;, I,, are the gradients obtained by convolving the image I with the deriva-
tives of a pair of Gaussian filters (Section 4.A). A point feature is selected if
C(x) exceeds a certain threshold . Selection based on a single global threshold,
however, is not a good idea, because one region of the image may contain objects
with strong texture, whereas another region may appear more homogeneous and
therefore it may not trigger any selection (see Figure 11.3). Therefore, we recom-
mend partitioning the image into riles (e.g., 10 x 10 regions of 64 x 48 pixels each,
for a 640 x 480 image), sorting the features according to their quality C(z) in each
region, and then selecting as many features as desired, provided that they exceed
a minimum threshold (to avoid forcibly selecting features where there are none).
For instance, we typically start with selecting about 200 to 500 point features.

In addition, to avoid associating multiple features with the same point, we al'SO
impose a minimum separation between features. Consider, for instance, a white
patch with a black dot in the middle. Every window of size, say, 11 x 11, centered
at a point within 5 pixels of the black dot, will satisfy the requirements aboYe and
pass the threshold. However, we want to select only one point feature for this dot.
Therefore, once the best point feature is selected, according to the criterion C (a:),
we need to “suppress” feature selection in its neighborhood.

2A value that is often used is k = 0.03, which is empirically verified to yield good results.

11.1. Feature selection 379

.

o

& T,
Ay

Figure 11.3. Examples of detected features (left) and quality criterion C(z) (right). As it
can be seen, certain regions of the image “attract” more features than others. To promote
uniform selection, we divide the image into tiles and select a number of point features in
each tile, as long as they exceed a minimum threshold.

The choice of quality criterion, window size, threshold, tile size, and minimum
separation are all part of the design process. There is no right or wrong choice
at this stage, and one should experiment with various choices to obtain the best
results on the data at hand. The overall feature selection process is summarized in
Algorithm 11.1.

Algorithm 11.1 (Point feature detection).

1. Compute image gradient VI = [I, I,]T as in Section 4.A.

2. Choose a size of the window W (x) (e.g., 7 x 7). Compute the quality of each pixel
location x, using the quality measure C'(z) defined in equation (11.1).

3. Choose a threshold 7; sort all locations @ that exceed the threshold C(z) > 7, in
decreasing order of C'(x).

4. Choose a tile size (e.g., 64 x 48). Partition the image into tiles. Within each tile,
choose a minimum separation space (e.g., 10 pixels) and the maximum number of
features to be selected within each tile (e.g., 5). Select the highest-scoring feature
and store its location. Go through the list of features in decreasing order of quality;
if the feature does not fall within the minimum separation space of any previously
selected features, then select it. Otherwise, discard it.

5. Stop when the number of selected features has exceeded the maximum, or when all
the features exceeding the threshold have been discarded.

Further issues

I}l order to further improve feature localization one can interpolate the func-
ion C(x) between pixels, for instance using quadratic polynomial functions,

‘ flIld choose the point that maximizes it. In general, the location of the max-
- Imum will not be exactly on the pixel grid, thus yielding subpixel accuracy

in feature localization, at the expense of additional computation. In particular,

| the approximation of C' via a quadratic polynomial can be written as (' (&) =

380 Chapter 11. Step-by-Step Building of a 3-D Model tfrom Images

a&? 4+ bj? +ciy +dz +ey+ f forall & € W(x). As long as the window chosen
is of size greater than 3 x 3, we can find the minimum of C(Z) in W(x) with
respect to a, b, ¢,d, e and f using linear least-squares as described in Appendix
A.

A similar procedure can be followed to detect line segments. The Hough trans-
form is often used to map line segments to points in the transformed space,
More details can be found in standard image processing textbooks such as
[Gonzalez and Woods, 1992]. Once line segments are detected, they can be clus-
tered into longer line segments that can then be used for matching. Since matching
line segments is computationally more involved, we do not emphasize it here and
refer the reader to [Schmidt and Zisserman, 2000] instead.

11.2 Feature correspondence

Once candidate point features are selected, the goal is to track or match them
across different images. We first address the case of small baseline (e.g., when the
sequence is taken from a moving video camera), and then the case of moderate
baseline (e.g., when the sequence is a collection of snapshots taken from disparate
vantage points).

11.2.1 Feature tracking

We first describe the simplest feature-tracking algorithm for small interframe mo-
tion based on a purely translational model. We then describe a more elaborate but
effective tracker that also compensates for contrast and brightness changes.

Translational motion model: the basic tracker

The displacement d € R? of a feature point of coordinates € R? between con-
secutive frames can be computed by minimizing the sum of squared differences
(SSD) between the two images [;(x) and [;11(x + d) in a small window W(x)
around the feature point x. For the case of two views, ¢ = land i + 1 = 2, we
can look for the displacement d that solves the following minimization problem
(for multiple views taken by a moving camera, we will consider correspondence
of two views at a time)

minEd) = Y [L(&+d) - L(z)]" (11.2)
d zEW (x)

As we have seen in Chapter 4, the closed-form solution to this problem is given |

by
d=—-G b, (11.3)

11.2. Feature correspondence 381

where

o= | Zwel Twa bl] b= [2w a) Lels }
ZW(m) Iw]y ZW(m) [y ’ ZW(w) Iy[t ’

and Iy = I, — I, is an approximation of the temporal derivative,3 computed as
a first-order difference between two views. Notice that G is the same matrix we
have used to compute the quality index of a feature in the previous section, and
therefore it is guaranteed to be invertible, although for tracking we may want
to select a different window size and a different threshold. In order to obtain
satisfactory results, we need to refine this primitive scheme in a number of ways.

First, when the displacement of features between views exceeds 2 to 3 pixels,
first-order differences of pixel values cannot be used to compute temporal deriva-
tives, as we have suggested doing for ; just now. The proposed tracking scheme
needs to be implemented in a multiscale fashion. This can be done by construct-
ing a “pyramid of images,” by smoothing and downsampling the original image,
yielding, say, I', I?, I?, and I*, of size 640 x 480, 320 x 240, 160 x 120, 80 x 60,
respectively.* Then, the basic scheme just described is first applied at the coarsest
level to the pair of images (17, I}), resulting in an estimate of the displacement
d* = —G'b. This displacement is scaled up (by a factor of two) and the window
W (x) is moved to W (z + 2d*) at the next level (13) via a warping of the image®
B(x) = I3(x + 2d*). We then apply the same scheme to the pair (I}, I3) in
order to estimate the displacement d°. The algorithm is then repeated until the
finest level, where it is applied to the pair I} () and I3 () = I}(z + 2d?). Once
the displacement d! is computed, the total estimated displacement is given by
d=d' +2d* + 4d® + 8d*. In most sequences captured with a video camera,
two to four levels of the pyramid are typically sufficient.

Second, in the same fashion in which we have performed the iteration across
different scales (i.e. by warping the image using the estimated displacement and
Teiterating the algorithm), we can perform the iteration repedtedly at the finest
scale: In this iteration, d**! is computed between I () and the warped interpo-
lated® image I3(x) = Ip(x + d' + - - + d'). Typically, 5 to 6 iterations of this
kind” are sufficient to yield a localization error of a tenth of a pixel with a window

SA better approximation of the temporal derivative can be computed using the derivative filter,
Wwhich involves three images, following the guidelines of Appendix 4.A.

*A more detailed description of multiscale image representation can be found
in [Simoncelli and Freeman, 1995] and references therein.

SNotice that interpolation of the brightness values of the original image is necessary: Even if we
assume that point features were detected at the pixel level (and therefore & belongs to the pixel grid),
there is no reason why @ + d should belong to the pixel grid. In general, d is not an integer, and
Fherefore, at the next level, all the intensities in the computation of the gradients in G and b must be
Interpolated outside the pixel grid. For our purposes here, it suffices to use standard linear or bilinear
interpolation schemes.

%As usual, the image must be interpolated outside the pixel grid in order to allow computation of
Gand b.

"This type of iteration is similar in spirit to Newton-Raphson methods.

