
Defining Patches

You define a patch by specifying the coordinates of its vertices and some form of

color data. Patches support a variety of coloring options that are useful for visualizing

data superimposed on geometric shapes. There are two ways to specify a patch:

The second technique is preferred for multifaceted patches because it generally requires less

data to define the patch; vertices shared by more than one face need be defined only once.

• By specifying the coordinates of the vertices of each polygon, which

MATLAB connects to form the patch

• By specifying the coordinates of each unique vertex and a matrix that

specifies how to connect these vertices to form the faces

Matlab patch Function
Create patch graphics object

patch is the low-level graphics function for creating patch

graphics objects. A patch object is one or more polygons defined

by the coordinates of its vertices. You can specify the coloring and

lighting of the patch.

Syntax

patch(X,Y,C)

patch(X,Y,Z,C)

patch(FV)

patch(...'PropertyName',PropertyValue...)

patch('PropertyName',PropertyValue...) PN/PV pairs only

handle = patch(...)

Description

Polygon patch

patch(X,Y,C) adds the filled two-dimensional patch to the current axes. The

elements of X and Y specify the vertices of a polygon. If X and Y are matrices,

MATLAB draws one polygon per column. C determines the color of the patch. It

can be a single ColorSpec, one color per face, or one color per vertex. If C is

a 1-by-3 vector, it is assumed to be an RGB triplet, specifying a color directly.

patch(X,Y,Z,C) creates a patch in three-dimensional coordinates.

You must specify color data so MATLAB can determine what type of

coloring to use. If you do not specify color data, MATLAB returns an error.

Polygon Example

A polygon is simply a patch with one face. To create a polygon, specify the coordinates of

the vertices and color data with a statement of the form

patch(x-coordinates,y-coordinates,[z-coordinates],colordata)

For example, these statements display a 10-sided polygon with a yellow face enclosed by a

black edge. The axis equal command produces a correctly proportioned polygon.

t = 0:pi/5:2*pi;

patch(sin(t),cos(t),'y')

axis equal

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

The first and last vertices need not coincide;

MATLAB automatically closes each polygonal

face of the patch. In fact, it is generally better to

define each vertex only once.

Interpolating Vertex Colors

t = t(1:length(t)-1);

h = linspace(0,1,10);

s = ones(10,1);

v = s;

hsv = cat(3,h',s,v);

rgb = hsv2rgb(hsv);

close

patch(sin(t),cos(t),rgb);

axis equal

Remove redundant vertex

You can specify color for each

vertex, each face, or a single color

for the entire patch.

RGB Hexcone

close

t = (0:5)*pi/3;

x = [cos(t) 0 0]';

y = [sin(t) 0 0]';

z = [ones(7,1); 0];

vert = [x y z];

faces = [1 2 7; 2 3 7; 3 4 7; 4 5 7; 5 6 7; 6 1 7; ...

8 1 2; 8 2 3; 8 3 4; 8 4 5; 8 5 6; 8 6 1];

rgb = [1 0 0; 1 1 0; 0 1 0; 0 1 1; 0 0 1; 1 0 1; 1 1 1; 0 0 0];

patch('Vertices',vert,'Faces',faces,'FaceVertexCData',rgb, …

'FaceColor','interp','EdgeColor','w');

These matrices specify the cube using Vertices

and Faces. Using the vertices/faces technique

can save a considerable amount of computer

memory when patches contain a large number of

faces. This technique requires the formal patch

function syntax, which entails assigning values

to the Vertices and Faces properties explicitly.
Because the high-level syntax does not automatically

assign face or edge colors, you must set the

appropriate properties to produce patches with colors

other than the default white face color and black edge

color.

Faces with Varying Numbers of Vertices

MATLAB does not require each face to have

the same number of vertices. In cases where

they do not, pad the Faces matrix with NaNs.

To define a patch with faces that do not close,

add one or more NaNs to the row in the

Vertices matrix that defines the vertex you do

not want connected

close

vert = [-1 -1 0; 1 -1 0; 1 1 0; -1 1 0; 0 0 2; NaN NaN NaN];

faces = [1 2 5 NaN; 2 3 5 NaN; 3 4 5 NaN; 4 1 5 NaN; 1 2 3 4];

rgb = [1 0 0; 1 1 0; 0 1 0; 0 0 1; 1 0 1];

patch('Vertices',vert,'Faces',faces,'FaceVertexCData',rgb,'Face

Color','flat');

axis equal
I added an extra row of vertices, otherwise faces and

vert are the same length, and MATLAB gets confused

about whether to do vertex coloring or face coloring.

