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Preface

Summary

This work is devoted to a new camera calibration method. The method is
based on a simulation of a virtual 3D object by multiple views of a copla-
nar calibration grid. The method refines values of the estimated camera
parameters through an iterative process consisting of several steps. The ap-
proach has been evaluated in many experiments with both synthetic and real
calibration targets.

Structure of This Work

Chapter 1 gives a brief introduction to a camera calibration. Different cam-
era models and calibration approaches are discussed in Chapter 2. A new
calibration method is proposed in Chapter 3 which is the main part of this
work. A practical realization of the proposed method is presented in Chap-
ter 4. Chapter 5 is devoted to an experimental evaluation of the method.
Chapter 6 concludes the whole work and gives some future directions. The
appropriate calibration toolbox created by the author is described in Ap-
pendix A. Appendix B gives the user instructions for this toolbox. Finally,
an example of the calibration process is listed in Appendix C.

Contributions of This Work

The main contributions of this work are:

e A new iterative camera calibration method using multiple views of
coplanar calibration target (Chapter 3)

il
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e A MATLAB calibration toolbox implementing the proposed method
(Appendix A)

e A througout overview of geometrical calibration of a camera (Chap-
ter 2)

e A new approach to 3 by 3 coplanar DLT matrix decomposition based
on non-linear minimization (Section 3.4)

e One parameter expression of the rotation in the optimization part (Sec-
tion 3.4.3)

Basic parts of this work were covered by the paper ”Bakstein, Halit: Camera
Calibration with a Simulated Three Dimensional Calibration Object” which
was accepted for the 23-rd Workshop of the Austrian Association for Pattern
Recognition (OAGM’99).
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Chapter 1

Introduction

Every image acquired by a camera is distorted. The distortion is caused by
the lenses, improper manufacturing and positioning of the camera sensor and
even by temperature and vibrations [Nal93]. Figure 1.1 depicts forming of
an image of a scene. The scene is observed by a camera. Due to a lower
cost, an analogue camera is typically used which requires a frame grabber to
convert an analogue signal into an appropriate digital form. The line jitter
distortion caused by different sampling frequencies in the camera and the
frame grabber is introduced during the conversion. After the digitalization,
the image is ready to be displayed and visualized by a computer.

Camera
Frame-

Image <« grabber% CCD «—— Scene
Norse

A
Line jitter Geometrical and radial distortion
Scale difference Perspective projection
Tempetrature
Vibrations

Figure 1.1: A scheme of an image forming. See text for a description

A mapping of a 3D scene into a 2D image, called perspective projection, can
also be considered as a distortion because it does not preserve angles and
distances. The perspective projection of a square is a general quadrangle as
demonstrated in Figure 1.2.

All the mentioned distortions are linear because they can be expressed by a
linear (matrix) algebra. But there exist nonlinear distortions too. The first
of them, radial distortion, displaces points in the image plane inwards to or
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Figure 1.2: Perspective projection of a square

outwards from its optical center. The displacement is a function of a distance
from the center and it is circular symmetric. If the points are shifted towards
the center, the distortion is called barrel, otherwise pincushion. These names
were chosen after the shapes to which a square is transformed by influence
of this distortion, see Figure 1.3.

Figure 1.3: Radial distortion: a) barrel, b) pincushion

Another group of nonlinear distortions, called lens distortions, generally have
two components, radial and tangential, as depicted in Figure 1.4. The most
significant lens distortion, called decentring, is due to the fact that the optical
centers of lens elements in composed lenses are not strictly collinear. Another
one, thin prism distortion, arises from imperfect camera assembly.

Besides these geometrical distortions there exist so called radiometrical dis-
tortions which characterize various luminous degradations during the acqui-
sition of images. An overview of all the distortions caused by a real camera
is given in Figure 1.5.

To acquire information from an image of a scene such as shapes of objects,
distances between them, color characteristics of the scene and so on, the
camera has to be calibrated. A camera calibration [HS93] is a process of
acquiring knowledge about the relation between an image of a scene taken
by the camera and the scene itself, usually including the position of the
camera in the scene and its internal characteristics.
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%
;{,
&) distorted
ideal

Figure 1.4: Radial (dr) and tangential (dt) components of non-linear lens
distortions. An ideal point is moved into distorted position. From [WCH92]

Distortions

.

Geometrical Radiometrical
Linear Non-linear
Perspective Difference Radial Lens distortions
projection in scale
Lack of Shift of the
orthogonality image origin
Barrel Pincushion Radial Tangential

Figure 1.5: An overview of distortions caused by a real camera. Note that
the radiometrical distortions are not fully covered here

The calibration consists of two stages: geometrical and radiometrical. The
radiometrical calibration [KHMO95], [Bey92] is performed to acquire the infor-
mation on how the camera distorts the luminous characteristics of the scene
such as color, luminance, brightness etc. The geometrical calibration leads to
knowledge of rotation and position of the camera (commonly called the ez-
trinsic camera parameters) and its internal characteristics (intrinsic camera
parameters) such as focal length, position of the principal point, difference
in scale of the image axes and so on.
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Scene

Light ray

yvA C A Scene coordinates

I Image plane

7 X" Camera coordinates

Optical center O

Figure 1.6: Projection of a scene into an image. See text for a description

Figure 1.6 demonstrates the projection of a scene into an image. P; represents
points in a scene and ¢; are the corresponding points in the image plane. The
coordinate system of the camera (z',y’, 2’) is chosen in such a way that the
z' axis is perpendicular to the image plane I. The scene coordinate system
(x,y, 2) can be set freely. All light rays from a scene intersect in one point,
called an optical center or center of perspective O. The line o going through
the optical center O and perpendicular to the image plane I is called an
optical axis. The intersection between the axis o and the image plane [ is
called a principal point c¢. Note that this point does not have to be in the
center of the CCD array.

The geometrical distortions significantly change positions of points in the im-
age of a scene acquired by a camera. Therefore it is important to compensate
such displacements. The next chapter is focused on how this is accomplished.



Chapter 2

Geometrical Calibration of a
Camera

As noted before, the calibration process consists of radiometrical and geo-
metrical stages. The radiometrical camera calibration is typically neglected
in standard computer vision methods, although it plays a very important
role in special applications such as astronomy imaging, photometry, color
processing and so on. On the other hand, the geometrical calibration has to
be performed for most of the vision tasks.

During the geometrical camera calibration, an image of some special scene is
acquired. The scene contains so called calibration objects or targets, whose
shapes and dimensions are a priori known. On these objects, there are vi-
sually detectable features whose coordinates are used for the calibration. It
should be noted that there also exist so called self-calibration methods which
do not require explicitly known calibration objects [ZF96], [Tri98]. Never-
theless, the known calibration target is assumed in this work.

In this Chapter, calibration objects and various types of control points are
discussed first. Then, existing camera models are presented and compared.

2.1 Calibration Objects

For the camera calibration, a set of scene-image coordinate pairs has to be
provided. The scene coordinates are measured directly on the calibration
targets, the corresponding image coordinates has to be detected in the image.
In order to allow such a detection, the targets are equipped with visually
significant features painted on them. These features, such as intersections of
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lines, centers of gravity of circles, corners of squares and so on are then treated
as control (reference) points. After detecting the points in the image and
establishing the relation between their scene and image coordinates (called
matching) the camera is ready to be calibrated.

The calibration objects can be three dimensional, virtual 3D (simulated by
multiple views of a 2D target) or two dimensional (also called coplanar) as de-
picted in Figure 2.1. The 3D calibration objects are difficult to manufacture,
also the measurement of the coordinates of the control points in 3D space is
complicated. On the other hand, such objects allow a precise calibration. In
addition, most of the calibration methods require the 3D calibration objects
in order to estimate the complete set of the camera parameters.

There is a possibility to simulate a 3D calibration object by multiple views
of a 2D calibration target. The 2D plane can be moved freely between the par-
ticular image acquisitions [HS97] or the movement can be constrained [Tsa87].
An usual constraint is that the plane is moved only along one direction. The
main disadvantage of this approach is that the plane has to be moved pre-
cisely on a specified path and it should not be rotated or shifted during the
movements. This demand can be ensured by manipulating the plane by a
robot or with a help of special equipments (such as precisely made holders),
both not so commonly available yet.

If a coplanar calibration object is used, the full set of camera parameters
cannot be acquired without some a priori knowledge [Mel93]. For example
if the focal length is not known, then the distance of the camera from the
calibration object cannot be determined. In addition, when choosing initial
estimates of the parameters, errors are introduced into the calibration process
leading to inaccurate calibration results.

Calibration target

Three dimensional (3D) Simulated 3D Coplanar (2D)
Free movement Constrained movement

Figure 2.1: Types of calibration objects
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2.2 Control Points

The control points are typically represented by visually detectable features
painted on the surface of the calibration object. The points can be expressed
for example as centers of gravity, intersection of lines, corners of squares or
by a checkerboard as depicted in Figure 2.2.

0o HE

(b) (c) (d) (e) (£)

Figure 2.2: Variants of control points: centers of gravity of circles (a) and
squares (b), intersections of lines in rectangular (c) and triangular (d) meshes,
corners of squares (e) and checkerboard (f). The points are marked as dots

Positions of the control points in the acquired images can be detected man-
ually or by some of the auto-detection algorithms such as [Dav97], [Shi87]
or [Dev95]. The automatic detection methods typically require pure black-
and-white images. Because the camera provides gray scale or color images,
these images have to be converted first. The conversion, called threshold-
ing, is very sensitive to the correct setting of the threshold value. Improper
thresholding makes the determination of correct positions of control points
in the thresholded image difficult.

For example, the line crossings method fails when the thresholded lines are
too thin so they can be corrupted by noise or their parts can be invisible
as depicted in Figure 2.3(a). On the other hand, when the lines are too
thick and span over several pixels as demonstrated in Figure 2.3(b), their
intersection cannot be properly determined.

(a) (b)

Figure 2.3: Improper thresholding of lines: (a) underthresholding causes cor-
rupted and non-continuous lines. (b) overthresholding leads to lines spanning
multiple pixels
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A similar thresholding problem also applies to corners of squares. If the
squares touch each other in the calibration grid (like in a checkerboard) then
their thresholded images can overlap or can be separated as depicted in Fig-
ure 2.4(a). In such situations, the corners cannot be detected directly. If the
squares do not form a checkerboard, their images after improper threshold-
ing can have different sizes as demonstrated in Figure 2.4(b). The corners of
such squares are then detected in wrong positions.

(a) (b)

Figure 2.4: Improper thresholding of a checkerboard (a) and separated
squares (b). See text for a description

A detection of centers of gravity of circular or square targets is not so sensitive
to the thresholding errors but it introduces another problem. A perspective
projection of a square is a general quadrangle and a circle is projected to
an ellipse. In both cases, the center of gravity of the original object is not
the same as the center of gravity of its perspective projection. Figure 2.5(a)
depicts this situation for a square, Figure 2.5(b) for a circle. A method to
solve this problem was introduced in [HS96].

—&] (O

Figure 2.5: Differences between centers of gravity of an object (+) and its
perspective projection (x): a) square, b) circle. See text for a description

The proper choice of the calibration target depends on the size of the cali-
bration object, focal length of a camera, distance between the object and the
camera, light conditions in the scene and many other factors. An overview of
various calibration targets with their properties is summarized in Table 2.1.
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2.3 Models of a Camera

During the calibration, a real camera is simulated by a theoretical model
which describes how a scene is transformed into an image. There are various
models of a camera with different capability to cover the camera character-
istics. Many of them are based on physical camera parameters but there
also exist models representing only a projection of the scene points into the
image. The former are called explicit, the latter implicit camera models.

An example of an explicit camera model is so called DLT model [AKT71]
which provides the position of a camera in a scene, its focal length, principal
point and linear distortion coefficients. The extended DLT model [Mel94]
also simulates nonlinear lens distortions. On the other hand, the implicit
camera models such as two-plane method [WM93] do not provide any phys-
ical camera parameters at all. An overview of camera models is presented in
Figure 2.6.

Camera
models
Explicit Implicit
(physically based)
Pinhole DLT Photogrammetry Two-plane N-plane
Extended DLT Coplanar DLT
Traditional Simplified (Tsai)

Figure 2.6: An overview of camera models

2.3.1 Pinhole Model

So called pinhole [Fau93] is a model of an ideal camera. The pinhole model
is very simple, in fact it represents only rotation and translation (together
called rigid body transformation) of the camera followed by a perspective
projection. Another distortions (such as shift of the image origin or lens
distortions) are not taken into an account. Nevertheless, the pinhole gives a
good approximation of a real camera and therefore it is used as a base for
other calibration methods.
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The model can be formally described as

where, written in homogeneous coordinates, p; = [z, y;, 2;,1]T are scene co-
ordinates of the i-th point and ¢ = [wju;, wv;, w;]T are the appropriate
coordinates in the image plane. The matrices F, M, T

S|
Il
O O %
[
_— o O
—
Do
[\
N

mi1 M1z Ma3
M= Mo1 Moy 1MMo3 s (23)
m3z1 M3z M33

1 00 —Xp
T=|010 —y |, (2.4)
001 —2

represent focal length, rotation and translation of the camera, respectively.

The relations between the focal length f and the matrix F and the transla-
tion (xg, Yo, 20) and the matrix T are straightforward. On the other hand,
the expression of the rotation in the matrix M is more complicated. The
matrix is orthonormal and its columns express coordinates of the axes of the
rotated coordinate system, but it has nine parameters and only three degrees
of freedom.

A general rotation is typically expressed by Fuler angles as three sequential
elementary rotations w,, ¢, and x, along the axes of the Cartesian coordinate
system. Euler angles have an unwanted singularity when ¢, = 7 or ¢, = 37”
This could be acceptable when the orientation of the camera is restricted
in some directions. An alternative is to use quaternions (also called Euler
parameters) [R*82], which are four parameter singularity free representation
of rotation. The quaternions have a descriptive geometrical meaning: if the
axis of rotation is the unit vector r = [r,7,,72]" and the angle of rotation

along this axis is /3, the rotation is represented by the quaternion

T

B

g = |cos E,rxsin §,rysin 5Tz sin§ ) (2.5)
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2.3.2 Direct Linear Transform (DLT) Model

So called direct linear transform (DLT) [AKT71] is an extension of the pinhole
model. In addition to the pinhole, DLT models lack of orthogonality between
image axes, shift of the image origin and difference in scale of images axes.
It can be formally described as

where the DLT matrix A of the size 3 x4 is composed from primitive matrices
V., B, F, M, T as follows:

A =)\V'B7'FMT . (2.7)

The factor A # 0 express an overall scaling, the matrices F, M and T repre-
sent focal length, rotation and translation as in the pinhole model (Eq. 2.2,
Eq. 2.3, Eq. 2.4), the matrix V,

1 0 —Up
00 1

represents the shift of the image origin and the matrix B,

1+b by 0
B=| b 1—b 0 (2.9)
0 0 1

compensates the difference in scale and lack of orthogonality between image
axes. Note that the matrix V is clearly invertible and the matrix B is
invertible when b2 + b3 < 1. The values of b; and by are commonly in the
order of 10~%to 1075,

2.3.3 Coplanar DLT Model

When all object points are coplanar, that means they lie in one plane, the
coplanar DLT model [Mel94] can be used. If the world coordinate system is
chosen to satisfy z; = 0 for all points, the third column of the DLT matrix A
can be ignored, yielding the transformation (Eq. 2.6) in the form

G =Apspi, (2.10)
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where the coplanar DLT (CDLT) matrix A3 3) of the size 3 x 3 is defined by
Eq. 2.7, except that the translation matrix T has to be expressed as

1 0 —XTp
T=|01 —y | . (2.11)
0 0 —20

2.3.4 Extended DLT Models

In his dissertation [Mel94], T. Melen introduced an extension to the DLT
model where the nonlinear compensation term 6 models both radial and
decentring distortion using five more parameters. The detected image coor-
dinates are corrected by this term after the standard DLT model is estimated.
An iterative approach to determine the term d is proposed in the paper.

J. Heikkild and O. Silvén [HS97] use the DLT model as the initial guess for
a nonlinear minimization of the following error function:

n n

S (Ui—w)+> (Vi—w)’ (2.12)
i=1 i=1
where n is the number of control points, (U;,V;) are the image coordinates
of the points and (u;, v;) are the corresponding coordinates predicted by the
model.

A similar approach is also applied in [LVD98]. An optimization is used to
minimize the error function Eq. 2.12 with a help of multiple views of the
same scene containing a 3D calibration object.

2.3.5 Traditional Photogrammetry Model

In photogrammetry, the extended pinhole model [S1a80] is used to achieve
high precision results. The correction of the shift of the image origin and the
compensation term & = [d,, d,] are added to the original pinhole model. The
term 0 models both linear and nonlinear distortion, giving the transformation
in the form:

4G =v+¢+06(aq) , (2.13)

where v = [ug, vg] is the center of the image plane, ¢; is a perspective projec-
tion of an object point p; and ¢ is an appropriate point in the image plane.
The accurate results are achieved at the cost of long computational time and
precise calibration objects.
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2.3.6 Simplified Traditional Models

Regarding the different tasks and available equipments, R. Tsai [Tsa87],
[LT88] proposed a simplified traditional camera model suitable for computer
vision applications. Only the radial distortion, shift of the image origin and
differences in scale of the image axes are compensated by so called radial
alignment constant. This camera model became very popular when its im-
plementation in C was published freely on the Internet [Wil95]. More precise
model, which also covers the decentring and thin prism distortions, was in-
troduced by J. Weng in [WCH92].

2.3.7 Two-plane Camera Models

All above methods try to estimate the physical camera parameters, but there
are situations when only the knowledge on how the camera transforms a scene
into an image is needed. This does not necessary require that the physical
camera parameters to be estimated at all.

Two-plane camera models define a light ray by its intersections with two
parallel planes in the object coordinate system. The appropriate mapping
from the image plane to these planes is estimated by a special calibration
procedure based on a dense grid of control points which should cover the
largest possible area of the image plane to achieve reliable results. The
mapping is typically described as a combination of power terms. More than
two planes and B-spline patches can also be used [CLSB92]. In addition,
the parallel planes can be simulated by a static camera equipped with zoom
lenses as proposed in [DLDL96].

2.3.8 Comparison of Camera Models

The choice of an appropriate camera model depends mainly on the type of
application. In the field of a computer vision, the use of CCD cameras instead
of precise photogrammetric equipments allows the simplified traditional or
extended DLT models to be suitable for most cases. An important criterion
is also the numerical stability of the particular model. When a nonlinear
search is introduced during the calibration, there is a possibility that the
optimization routine can stick in a local extremal point or it does not converge
at all. A direct computation of the camera parameters based on a linear
model (the pinhole, standard or coplanar DLT) can serve as a good initial
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guess. A comparison of the camera calibration models presented in previous
sections is given in Table 2.2.

Table 2.2: Comparison of the camera calibration models

Camera model | Number of | Advantages Disadvantages
parameters
Pinhole 7 linear, simple, stable does not model a real
camera
DLT 12 linear, stable, needs does not model
(Direct Linear only 6 points to non-linear distortions,
Transform) compute parameters needs 3D calibration
object
CDLT 11 linear, stable, needs does not model
(coplanar only 6 points to non-linear distortions,
DLT) compute parameters, needs an initial guess
uses 2D calibration of some of the
object parameters
Extended DLT | 14-18 models lens iterations or
distortions non-linear search
Traditional 14+ accurate results non-linear search,
(Photogram- computationally
metry) expensive, needs
precise calibration
object
Simplification | 11-16 good results, source non-linear search,
of traditional code of the method is | depends on the data
model (Tsai) freely available precision
Two-plane no physical | possibility to use does not necessary
parameters | coplanar target, back | model a real camera,
projection can be accuracy strongly
computed depends on the area
of the image plane
covered by the control
points




Chapter 3

Camera Calibration with a
Virtual 3D Calibration Object

In this Chapter, a new camera calibration method based on a virtual 3D
calibration object is proposed. First, the motivation is presented. In the
next Section, an overview of the proposed method is given. Then, particular
steps of the method and its iterative refinement are described in more details.
Finally, the proposed iterative approach is summarized and compared with
other calibration methods.

3.1 Motivation

Various calibration approaches and camera models were characterized in the
previous Chapter. In practice, the choice of a suitable calibration method
depends mainly on the required precision of the calibration and on available
resources. For the best results, the traditional photogrammetry methods
have to be used. But these methods assume very fine manufactured and
measured calibration objects, which are not widely available yet.

As it was already noted, a 3D calibration object is required to achieve precise
and reliable results. When a coplanar object is used, the accuracy of the
calibration depends on the initial guess of some of the camera parameters. If
a 3D object is simulated by a multiple views of a 2D plane, it is important
whether the plane can be moved freely or the movement is constrained. The
latter approach requires special and usually expensive equipments such as a
robot.

16
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From the mentioned facts it follows that the most effective approach is to ex-
ploit a virtual 3D calibration object simulated by unconstrained movements
of a coplanar target. Current calibration methods based on this principle
either include a nonlinear search over large number of parameters [HS97] or
do not provide the physical camera parameters at all [WM93|. To overcome
this deficiency, the proposed method is based on a geometrical construction
of the object.

3.2 Overview of the Proposed Calibration
Method

The proposed method uses multiple views of a 2D calibration target (so
called calibration plate) to simulate a 3D object, which is needed for precise
and reliable calibration results. The calibration plate can be moved freely
between the image acquisitions. An important assumption of the method is
that the intrinsic parameters of the camera are constant for all views. This
constraint allows the simulation of the 3D object to be based on relative
positions of the plate between particular acquisitions.

The method consists of the following four steps (see Figure 3.1):

1. an initial estimation of the intrinsic parameters of a camera
2. an estimation of the extrinsic camera parameters for each view

3. a construction of a virtual 3D calibration object from multiple 2D
planes

4. a complete camera calibration based on the virtual 3D object

Due to the use of a coplanar calibration target, an initial guess of the intrinsic
camera parameters is needed. These parameters are supplied by the user in
the first step of the proposed method.

In the second step, the extrinsic camera parameters are estimated for each
view with respect to the provided intrinsic parameters. Any explicit coplanar
camera calibration method can be applied here.

In the third step, the virtual 3D calibration object is constructed. The con-
struction exploits the knowledge on the camera positions for all views pro-
vided by the previous step.
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Scene and
image coordinates
of control points

Step 1

Initial estimation
of intrinsic camera
parameters

Intrinsic camera

parameters

Step 2

Estimation of extrinsic
camera parameters
for each view

Positions of cameraw

for all views
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Figure 3.1: A scheme of the proposed calibration method



CHAPTER 3. PROPOSED CAMERA CALIBRATION METHOD 19

The pairs of scene and image coordinates of the control points of the simu-
lated calibration object are finally passed to the fourth step of the proposed
method, in which a complete set of the camera parameters is estimated. Any
explicit 3D based camera calibration method can be used for this purpose.

As a result of the calibration, both intrinsic and extrinsic camera parameters
are provided. Regarding the fact that the proposed calibration method needs
an initial guess of the internal characteristics of the camera, its accuracy can
be improved as follows: The obtained intrinsic parameters are put back to
the second step of the method and a new set of the camera parameters is
estimated. If the new estimate of the intrinsic camera parameters differ from
the previous one, the whole computation is iterated. The iterations finish
when some convergence check is fulfilled.

3.3 Step 1 — Initial Estimate of the Intrinsic
Camera Parameters

With respect to the coplanar calibration target, an initial guess of the intrin-
sic camera parameters has to be is provided for the calibration. The proposed
method requires a priori knowledge on the following parameters:

e focal length f
e coordinates of the principal point ug, v

e linear distortion coefficients b; and b,

The appropriate values can be obtained from a data sheet of the camera.
If the parameters are not available, rough estimates (such as nominal focal
length, center of the image and no linear distortions) should suffice. These
parameters are iteratively refined during the calibration process.

3.4 Step 2 — Estimation of the Extrinsic
Camera Parameters for Each View

In case of a coplanar calibration target, the estimation of the camera pa-
rameters is possible only under the knowledge of a subset of its parameters.
When the intrinsic camera parameters are known, the appropriate position
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of the camera can be computed from the model. The intrinsic parameters
are constant for all views which ensures the consistency of the estimates.
The computation of this step depends on particular model of the camera,
the coplanar DLT (Section 2.3.3) was chosen here. The parameters are com-
puted directly from the model, then their values are refined in an optimization
routine.

3.4.1 Direct Computation of the Extrinsic
Parameters

The CDLT matrix A (Eq 2.7) is the result of the camera calibration with
coplanar target based on the CDLT model. This matrix represents the cam-
era and the extrinsic parameters can be extracted from it under the knowl-
edge of the intrinsic characteristics of the camera. The matrix A can be
written as:

A =)\V'B7'FMT , (3.1)
where the matrices F (Eq 2.2), B (Eq 2.9) and V (Eq 2.8) represent the
known intrinsic camera parameters f, ug, vo, b1 and by respectively. The
rotation matrix M (Eq 2.3), the translation matrix T (Eq. 2.11) and the
scaling factor A are unknown. They have to be extracted from the matrix A
in order to compute their values. The matrix A can be premultiplied with
matrices F, B and V, the result is the matrix Q:

Q=F 'BVA . (3.2)
From Eq. 3.1 follows that:
Q=) MT . (3.3)

This means that the matrix Q represents the unknown position of the camera
and the scaling factor .

The extraction of the rotation matrix M is based on the orthogonality con-
straint on its columns. Eq. 3.3 can be written in a vector form as:

- : : 10
Q Q@ gz |[=A[ my m; my 01 -t [, (3.4)
. ) ) 00
yielding that the first two columns of the matrix M can be estimated directly

from the following equations:
)\m1 = O (35)
)\m2 = Q2 . (36)
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The scale factor A should be the same in both equations but this is not true
in real situations. Regarding that, A is approximated by the value:

di|| + {92
N CETH .
where the operator ||-|| denotes the vector size of a particular vector. After

the scaling factor A is known, the first two columns of the rotation matrix M
are approximated by the vectors:

. 1
. 1

Being the part of the rotation matrix, these two vectors have to be orthonor-
mal. With respect to the fact that only approximate values of the internal
camera parameters and the scaling factor A are provided, this constraint does
not have to be fulfilled. Thus, the vectors are normalized first, yielding:

m L & (3.10)

m, = -——1 .
[ ]

m ! & (3.11)

my, = -——Iy . .
|||

Then, the orthogonalization is based on the following idea (see Figure 3.2):
The vectors determine a plane. To become orthogonal, the vectors have
to be rotated in this plane. This operation is accomplished by transform-
ing them into the 2D coordinate system, orthogonalizing (see Figure 3.2)
and transforming the orthogonalized vectors back into the 3D space. The
transformation to the 2D plane is performed by a rotation matrix G. The
matrix G is created from a quaternion g:

T
g = |cos 1, T Sin 1, Ty Sin 1, r,sin L (90, 91, 92, gg]T . (3.12)

2 2 2 2
where v = arccos (n,, ® [0,0,1]) is the angle of rotation along the axis r =
74,7y, 72]. The vector n,, = m; X m, is the cross vector product of m; and

m,, r = n,, X [0,0,1]. The operator ® denotes the scalar product of vectors.
The matrix G is computed as [Mel94, page 31]:

1—2(g95+ %) 2(g192+ 9093) 2 (9193 — G0g2)
2(g192 — gog3) 1—2(91 +93) 2(9295 + Gog1) , (3.13)
2(9195 + 9092) 2(9295 — gog1) 1—2(g%+ 93)

G=——
gl
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Transforming vectors m; and m, by the matrix G gives the desired coordi-
nates of these vectors in the 2D coordinates system:

t;, = Gm, (3.14)

Now the vectors are made orthogonal as demonstrated in Figure 3.2. The
angle a between the vectors

a = arccos (t; © to) (3.16)

us

2

is changed to T by rotating both vectors in the opposite directions by the

angle g:

g =1 (g - a) . (3.17)

01 02

Figure 3.2: Orthogonalization of two vectors in a plane: ¢; and ¢, are the
original vectors, o; and 0, the orthogonalized ones

The orthogonal vectors o; and 0, are then transformed back to the original
plane by the inverse matrix G~

m, = G lo (3.18)
my, = G_102 . (319)

With respect to the orthogonality property of the matrix M, its third col-
umn mg is computed as the vector product of m; and ms:

ms; =m; X ms . (320)

Note that the final matrix M,

M = m; Imgy; InNj (321)
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is a proper matrix of rotation.
After the rotation matrix M is estimated, the translation matrix T is com-
puted directly from Eq. 3.4:

qs = —AMt , (3.22)

yielding the vector t as:

1
t = —lerlq3 : (3.23)

The translation matrix T is then constructed as:

(3.24)

H
I
o o~
o o
|
o+

The results of the decomposition of the CDLT matrix A under the knowledge
of the intrinsic camera parameters are the appropriate rotation matrix M and
the translation matrix T, which represent the extrinsic camera parameters.
In fact, these matrices encode the relative position of the camera in the
particular view.

3.4.2 Finding the Optimal Extrinsic Parameters

The direct computation of the extrinsic camera parameters gives only rough
estimate of rotation and translation, mainly because only approximations of
the intrinsic parameters were used in Eq. 3.2. The optimal values of the
extrinsic parameters have to be found so that the difference between the co-
ordinates of the control points detected in the image and the coordinates pre-
dicted by the model is minimal. The approximated rotation and translation
can be used as the initial guess for the standard least square minimization
of the error function:

> g =@l (3.25)
j=1

where n is number of control points in the particular view, ¢; = (u;,v;) are
the detected coordinates of the points and g; are their coordinates predicted
by the model:

= Ap , (3.26)

where the matrix A is composed as (See Eq. 2.7):
A =)\V 'B'FMT . (3.27)
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The matrices F, B and V represent the known intrinsic parameters (Sec-
tion 2.3.3), the rotation matrix M is defined by three parameters o, p, ¢
(Section 2.3.2) and the translation matrix T is determined by parameters
o, Yo, 20 (Eq 2.11).

The easiest way is to minimize the value of the error function Eq. 3.25 over
the full set of unknowns (three for rotation — o, p, ¢ — and three for translation

: 6.
— X0, Yo, 20 ) in R°:
n

. ~ 112

min i — G; . 3.28
But such a large number of unknowns may cause the optimization routine to
fail. It would be better, if the dimension of the searching space was reduced.

3.4.3 Reduction of the Dimension of the Searching
Space

The number of unknowns of a minimized function (the dimension of the
searching space) can influence the speed and stability of the optimization
routine. Therefore it is better to find a smallest possible number of parame-
ters of the minimized function.

When reducing the dimension of searching space, some of the unknowns have
to be made dependent of the rest of them. The question is whether to reduce
the number of parameters expressing the rotation or the translation. There
are constraints on the matrix of rotation, which are used in the decomposition
of the CDLT matrix (see Section 3.4). On the other hand, the translation
matrix is computed directly at the end of decomposition, thus it is a better
candidate for the reduction of the number of parameters.

The basic idea is that, under the knowledge of the coordinates pairs of control
points and their images, the zy and y, parameters of the translation can be
expressed by the appropriate z; parameter. From the equation of perspective

projection:
(u;,v;) = ( ]Zj , sz) , (3.29)

f f
where (u;,v;) is a point in an image, (z;,y;, 2;) is its source point in a scene
and f represents the focal length, it can be noticed that the coordinates of
image points are function of z coordinate of their sources. When (u;,v;)
and (x;,y;,7;) are known, the equation can be reformulated. Then, for a
given rotation only one unknown, 2y, to determine the translation is needed,
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thus reducing the dimension of the searching space to ®* (compare with
Eq. 3.28):

n

. ~ 112
min =gl - 3.30
zo,a,p,¢j2:1 la; — ;| ( )
The unknown translation has to be expressed by the matrix A and the co-
ordinate pairs of control points. Denoting S = T !A and with respect to
Eq. 3.27, the matrix S can be computed as:

S=V !B 'FM . (3.31)

The matrix S represents all transformations covered by the CDLT model
(see Section 2.3.3), except translation. Translating the coordinates of control
points p; with the unknown translation T and then transforming the resulting
points with matrix S is equal to transforming the control points with the
matrix A:

qj = Ap; =TT 'Ap; = TSp, . (3.32)

The result are the image coordinates of control points. Let ¢’ = [u},v}-],

where:
!

wjuj Uj
wivh | =81 v : (3.33)
w; 1

be the coordinates of the control points translated by the unknown trans-
lation and ¢ = [u;,v;] are coordinates of images of control points. Then
the unknown translation can be expressed by z, reformulating Eq. 3.29 and
computing the average value to minimize the error as:

1 n
To=— UiZo — T (3.34)
n =
1 &,
Yo= > Vizo — Yj (3.35)
j=1

where n is the number of control points and p = [z}, y;,, 0] is the j-th scene
point. As a result of this step, the optimal translation and rotation respective
to the specified values of the intrinsic parameters are estimated.

3.5 Step 3 — Construction of a Virtual 3D
Calibration Object

As it was already noted, a 3D calibration object is simulated by using mul-
tiple of the same coplanar target. All views of the target are acquired by
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one camera in different positions, thus the internal camera parameters are
assumed to be constant. One of the views is chosen as a reference view, let
it be the first one.

The virtual 3D object consists of N planes, where N is the number of views.
The planes are transformed so that the image coordinates of the control
points observed by the camera in the reference position are the same as the
image coordinates of the same points acquired by the camera in the position
respective to the i-th view (see Figure 3.3). Let us denote this transformation
as R,;.

Because the positions of the camera are estimated in the previous step for
all views, the transformation of the planes can be derived from them. A
relationship between two positions of the camera C;; has to be found to
express the transformation of the 2D plane R;. The construction of the
virtual 3D object can then be formally specified as:

¢=ARp , i1=1...N, (3.36)

where p; are the scene coordinates of control points respective to the i-th view,
q; are the appropriate images, A, is the matrix representing the camera in
the reference position. Note that C;; and R; are the identity matrices.

a) b)

N0

Figure 3.3: Using more views of 2D plane (a) to simulate a 3D object (b)

The relation between two positions of the camera can be expressed as:
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where T;; stands for translation and M;; for rotation. The relation is de-
scribed as follows: First, the camera has to be moved back to the center of
coordinates of the scene. This is done by inverse translation. Then it has
to be rotated back to the initial orientation. This is done by inverse rota-
tion. Then the camera is moved to the the second position by rotating and
translating:

Cij = T,M;M; 'T; ", (3.38)

where T; and M, are the translation and the rotation parts of the first
position of the camera and T; and M; are the translation and the rotation
parts of the second position of the camera. Homogeneous coordinates have
to be used here, yielding the translation and rotation matrices in the 4 x 4
form instead of 3 x 3.

When constructing the virtual 3D object it is the 2D plane which is moved,
not the camera (see Figure 3.3). The unknown position of the 2D plane in the
scene coordinate system is acquired by reformulating the above expression of
the relationship between the position of the camera. Utilizing homogeneous
coordinates, the transformation of the 2D plane is expressed as:

R; = T,M;M;'T ', (3.39)

where T; and M; are the translation and the rotation parts of the first
position of the camera and T; and M; are the translation and the rotation
parts of the position of the camera respective to the i-th view. It can be
noticed, that R; = C;".

Now the image coordinates of the control points acquired by the camera in
the position respective to the i-th view are considered as observed by the
camera in the reference position. Their appropriate scene coordinates can be
found by transforming the original scene coordinates with the matrix R;:

P/ =R, P, (3.40)
where P; are the original scene coordinates and P/ are the transformed scene

coordinates.

After the matrices R; are found, the virtual 3D object V' is constructed. The
object V' consists of control points. Let P; be all the coordinates of control
points respective to the i-th view. Then the virtual 3D object V' can be
formally specified as:

V:URﬁ. (3.41)
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The appropriate images () of the control points forming the virtual 3D object
V' are given as:

N
Q=UQi, (3.42)
=1

where (); are the coordinates of images of control points respective to the
i-th view. Now there is a virtual 3D object which can be used for a complete
3D based camera calibration.

3.6 Step 4 — Calibration with the Virtual
3D Calibration Object

The virtual 3D calibration object created in the previous step is represented
by control points V. The appropriate images of these points () are also part
of the output of the previous step. These coordinate pairs can be passed to
any explicit camera calibration method based on a 3D calibration object. It
this case, the DLT (Section 2.3.2) was chosen.

The DLT matrix A can be estimated using the method proposed in [Mel94,
Appendix A]. Then a complete set of camera parameters is obtained by
decomposition of the DLT matrix as proposed in [Mel94, Appendix C]. Thus
the parameters representing the rotation, the translation, the focal length,
principal points and linear distortion coefficients are obtained.

3.7 Iterative Refinement of the Camera
Parameters

Provided by the complete set of the camera parameters from the previous
step and with respect to the need of an initial guess, iterations are used to
refine the values of the camera parameters. The intrinsic parameters obtained
from the previous step are passed to the second step of the method.

At the end of each iteration, the calibration error expressing the difference
between the coordinates of control points predicted by the camera model and
their positions detected in the image is computed as:

1 m
i — il 3.43
m ;:1: @i — @l ( )
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where ¢; are the detected points, g; are the points predicted by the model
(see Eq. 3.26) and m is the total number of control points in all views. If
the condition of convergence is satisfied, the method is finished, else the next
iteration is started. A typical conditions are for example the improvement
of the camera parameters, the value of the calibration error or the maximum
number of iterations.

3.8 Discussion

The proposed method is based on the coplanar calibration target. Such a
target is easily accessible, but an initial guess of some of the intrinsic camera
parameters is required. To overcome this problem, multiple views of the 2D
target are used.

The proposed method consists of fours steps. Three of them are iterated to
refine the estimated camera parameters. There is also a possibility to use
nonlinear optimization of the parameters instead of iterations. The optimiza-
tion can be performed either over the intrinsic parameters or a complete set
of the camera parameters.

The former approach would result in a constant dimension of searching space
for any number of views, it would depend on the number of intrinsic param-
eters. The latter approach would cause the dimension of the searching space
to increase by six for each view. This method was introduced in [HS97]. It
should be noted that large dimension of the searching space has bad influence
on the stability of the optimization routine.

As stated before, the 2D calibration target can be easily manufactured and
measured. On the other hand, the methods based on a 3D calibration object
generally give more accurate results. Moreover, if the nonlinear distortion
is not taken into account, a direct computation of the camera parameters is
possible, which ensures stability.

The simulation of a 3D object using multiple views of a 2D plane combines
the advantages of the coplanar target with the ability to estimate a complete
set of the camera parameters. To avoid the stability problems, the iterative
approach was chosen instead of optimization. Although there is a nonlinear
minimization present in the second step of the method, the dimension of the
searching space is constant for any number of views. The method of reduction
of the dimension of the searching space to ! was proposed in Section 3.4.3.
This ensures smaller number of parameters of the minimized function than
in the optimization over the intrinsic parameters.
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Practical Realization

The proposed method is independent on camera calibration models used in
the particular steps, any explicit model can be used. In our case, the DLT
model and its coplanar variant were chosen. They were selected because of
their simplicity and ease of implementation.

As an input, the method requires the coordinate pairs of control points con-
sisting of the position in the scene and in the image plane. The initial guess
of the focal length, principal point and linear distortion coefficients has to
be supplied by the user. Such values can be acquired from the data sheet of
a camera. Note that the method requires the focal length to be specified in
pixels. When the conversion between the millimeters and pixels cannot be
determined, a good initial guess is to multiply the focal length in millimeters
by 100. The center of the CCD array is a good approximation of the un-
known principal point and 0 is usually set as a value of the linear distortion
coefficients. The conditions under which the iterative process stops have also
be specified by the user. This includes the maximum number of iterations
and desired precision level.

The proposed method is implemented in a System for Numerical Computa-
tion and Visualization - MATLAB [TMW84]. Some of the subroutines were
kindly provided by Radim Halif (estimation of DLT and CDLT matrices,
linear algebra and more), other were written by the author (main method,
construction of virtual 3D object, decomposition of CDLT matrix, utility
functions).

MATLAB was chosen because it is widely used software in scientific commu-
nity and because of the efficiency of coding. The MATLAB has a high level
language with many useful build-in functions. For example the method of R.
Tsai [Wil95] implemented in C has 5886 lines of code plus the optimization

30
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routine consisting of 3753 lines of code. The proposed method has 1624 lines
of code including the utility functions.

The minimization of the error function defined in Eq. 3.25 requires some
optimization routine to be used. In our case, SolvOpt [KK97], a freeware
nonlinear optimization toolbox for the MATLAB, was chosen. The com-
mercial optimization toolbox was not available for us, although the routines
included in it can provide better and faster convergence.
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Experimental Results

The proposed method has been evaluated in many experiments. A set of tests
with both synthetic and real data was performed and results were compared
with other calibration methods widely used today.

5.1 Evaluation on Synthetic Data

To verify the reliability of the method, a series of tests with synthetic data was
performed. An ideal camera with the intrinsic parameters listed in the first
row of Table 5.1 was assumed in the experiments. Lens and other nonlinear
distortions were not taken into account. The image size was 704 by 573
pixels and the size of the CCD cell (needed only for the conversion of the
value of the focal length from millimeters to pixels), was set to 11 x 11um.
The camera was described by the CDLT model (Section 2.3.3).

As a calibration target, a regular grid of 5 by 6 points was used. Multiple
views of the grid were simulated by the following imaging equations (see
Eq. 2.10):

gij = A;p;j fori=1...6and j=1...30 , (5.1)
where p; = [z;,y;,1] are the homogeneous coordinates of the j-th control
point in the grid, A; is the appropriate CDLT matrix for the the i-th view
and ¢;; = [wi;uij, wiv;5, w;;] are the homogeneous image coordinates of the

points p; in the i-th view. The matrices A; were created from the matrices
F, V, B, T; and M; as described in Section 2.3.2:

A; =V B 'FM,T, . (5.2)

32
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Table 5.1: Intrinsic parameters of a camera simulated in the experiments
with synthetic data (the first row) and their initial estimates used in the
proposed calibration method (the second row). Focal length and principal
point are expressed in pixels

Focal length Principal point Linear coefficients
f U Vo b1 b2
Ideal 1136 363 280 0.02639 —0.00002
values (12.5mm)
Initial 1300 353 286 0 0
guess (14.3mm)

Note that the matrices F, V, B which represent the focal length, principal
point and linear distortion coefficients are the same for all views. On the
other hand, the translation and rotation matrices T; and M;, encoding the
positions of a camera for particular views, differ. As a result of the simulation,
a set of pairs of the scene and corresponding image coordinates of the control
points is provided.

The calibration was performed by the proposed calibration method. The
initial guess of the intrinsic camera parameters is listed in the second row
of Table 5.1. The maximum number of iterations was set to 7. It is a
reasonable limit due to the fact that the camera parameters estimated during
the iterative process do not change significantly after a few iterations, as it
will be discussed later in this Chapter.

In the first experiment, the ideal data without noise were passed to the
method. The results of the calibration are summarized in Table 5.2. Different
number of views were used, as listed in the first column of the table. The
second column of the table shows the calibration error. The calibration error
expresses the average difference between detected and predicted coordinates
of the control points in the image plane and it is computed as:

1 m
—> g —al (5.3)
m i3
where m is the number of control points in all views, ¢; are coordinates of
the points detected in the images and ¢; = A(34)p; are image coordinates
of the points predicted by the model. The DLT matrix A3y estimated in

the fourth step of the method (Section 3.6) represents the camera in the
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reference position. Remaining columns of the table contain the intrinsic
camera parameters provided by the calibration.

The first row of the table shows the error caused by the initial guess of the
camera parameters, when no computations were performed. The second row
contains the results for the calibration with only two planes. Although the
error is small here, the camera parameters are not estimated correctly. It
was stated in [LVDO98] that at least three views are needed to get reliable
results.

The precision does not depend so much on number of views, instead the
position of the camera in these views is important. It is optimal to cover
regularly the whole space around the calibration target. The last row of the
table contains the ideal values of the parameters for a comparison.

For the following experiments, the data were blurred in the image plane by
Gaussian noise to evaluate the reliability of the proposed method. First,
the data were blurred by a noise with standard deviation set to half a pixel,
which simulates the precision of the manual detection of the control points.
In the next experiments, the noise with standard deviation set to one and
two pixels was added to emulate additional error sources such as vibrations,
incorrectly detected pints or line jitter. Finally, data were blurred by the
noise with the standard deviation set to five and ten pixels to show that the
method is robust and stable. The results are listed in Tables 5.3, 5.4, 5.5,
5.6 and 5.7 respectively. All tables have the same layout as Table 5.2.

As can be noticed from the presented tables, the method gives reliable results
for noise with the standard deviation up to 2 pixels When the data were
blurred by the noise with standard deviation of 5 pixels, the results were still
a good approximation of the camera parameters. The noise with standard
deviation set to 10 pixels is an extremal case. If there is such a large error in
the detection of the coordinates, the calibration cannot give reliable results.
This experiment was performed to show that the proposed method is robust
and the calibration error is of the same order as the noise.

The calibration error after 7 iterations is shown in Figure 5.1(a). Data were
blurred with Gaussian noise with standard deviation of 0.25 pixel. As can
be noticed, there is no systematic linear distortion. Note that the arrows
representing the shift of the control points are scaled. The mean of the error
is 0.35 pixels. Figure 5.1(b) demonstrates the dependence of the calibration
error on noise. It can be seen that the dependence is linear and the values
of noise and the error are of the same order.
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Table 5.2: Results of the calibration, synthetic data: ideal data, no noise.
See text for a description

‘ No. of views ‘ Error ‘ f ‘ Ug ‘ U ‘ by ‘ by ‘
Initial guess | 5.5349 | 1300 | 353 | 286 | 0.00000 | 0.00000
2 0.2683 | 1095 | 340 | 304 | —0.00068 | 0.00024
3 0.2806 | 1110 | 363 | 276 | 0.00102 | —0.00030
4 0.2295 | 1122 | 357 | 285 | 0.00232 | —0.00064
5 0.2208 | 1132 | 355 | 284 | 0.00179 | —0.00214
6 0.2119 | 1112 | 356 | 278 0.00142 | —0.00182

| Ideal values | 0.0 | 1136 | 363 | 280 [ 0.02639 [ —0.00002 |

Table 5.3: Results of the calibration, synthetic data: data were blurred by
Gaussian noise with standard deviation of 0.5 pixel. See text for a description

‘ No. of views ‘ Error ‘ f ‘ Ug ‘ U ‘ by ‘ by ‘
Initial guess | 5.3416 | 1300 | 353 | 286 | 0.00000 | 0.00000
2 0.6433 | 1105 | 342 | 305 | 0.00150 | —0.00031
3 0.6344 | 1111 | 360 | 276 | 0.00020 | —0.00082
4 0.6196 | 1118 | 356 | 283 | 0.00145 | —0.00111
5 0.6148 | 1128 | 355 | 283 | 0.00099 | —0.00267
6 0.6190 | 1110 | 356 | 278 | 0.00067 | —0.00228

| Ideal values | ~0.5 | 1136 | 363 | 280 | 0.02639 | —0.00002 |

Table 5.4: Results of the calibration, synthetic data: data were blurred by
Gaussian noise with standard deviation of 1 pixel. See text for a description

‘ No. of views ‘ Error ‘ f ‘ Ug ‘ U ‘ by ‘ by ‘
Initial guess | 6.2568 | 1300 | 353 | 286 | 0.00000 | 0.00000
2 1.3423 | 1085 | 344 | 319 | —0.00398 | —0.00376
3 1.3461 | 1087 | 372 | 277 | 0.00084 | —0.00108
4 1.3114 | 1118 | 357 | 292 | 0.00352 | —0.00023
5 1.3053 | 1127 | 353 | 289 | 0.00250 | —0.00235
6 1.3005 | 1098 | 354 | 280 | 0.00260 | —0.00170

| Ideal values | ~1.0 | 1136 | 363 | 280 [ 0.02639 [ —0.00002 |
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Table 5.5: Results of the calibration, synthetic data: data were blurred Gaus-
sian by noise with standard deviation of 2 pixels. See text for a description

‘ No. of views ‘ Error ‘ f ‘ Ug ‘ U ‘ by ‘ by ‘
Initial guess | 5.3482 | 1300 | 353 | 286 | 0.00000 | 0.00000
2 2.6889 | 1120 | 326 | 295 | 0.00116 | —0.00766
3 2.6025 | 1169 | 366 | 277 | 0.00268 | —0.00030
4 2.5637 | 1183 | 364 | 264 | 0.00345 | —0.00101
5 2.4727 | 1167 | 356 | 277 | 0.00261 | —0.00138
6 2.4720 | 1124 | 355 | 268 | 0.00212 | —0.00264

| Ideal values | ~2.0 | 1136 | 363 | 280 | 0.02639 | —0.00002 |

Table 5.6: Results of the calibration, synthetic data: data were blurred by
Gaussian noise with standard deviation of 5 pixels. See text for a description

‘ No. of views ‘ Error ‘ f ‘ Ug ‘ U ‘ by ‘ by ‘
Initial guess | 7.7322 | 1300 | 353 | 286 | 0.00000 | 0.00000
2 5.5571 | 1257 | 262 | 383 | —0.00252 | —0.01947
3 5.4407 | 1191 | 298 | 248 0.01144 0.00542
4 5.4857 | 1175 | 239 | 223 | 0.01090 | 0.00382
5 5.6355 | 1241 | 306 | 271 | 0.01469 | 0.01289
6 5.2863 | 1145 | 303 | 243 | 0.00116 | 0.01517

| Ideal values | ~5.0 | 1136 | 363 | 280 [ 0.02639 [ —0.00002 |

Table 5.7: Results of the calibration, synthetic data: data were blurred by
Gaussian noise with standard deviation of 10 pixels. See text for a description

‘ No. of views ‘ Error ‘ f ‘ Ug ‘ Vo ‘ by ‘ by ‘
Initial guess | 22.8240 | 1300 | 353 | 286 | 0.00000 | 0.00000
2 11.8873 | 2385 | —239 | —273 | 0.07359 | 0.19145
3 12.2211 | 1200 215 | =318 | —0.10832 0.33225
4 11.6157 | 1389 58 29 | 0.04446 | 0.13693
5 11.7966 | 1502 | 125 169 | 0.04211 | 0.08676
6 11.8370 | 1352 | 204 63 | 0.00011 | 0.10600

| Ideal values | ~10.0 [ 1136 | 363 | 280 [ 0.02639 [ —0.00002 |
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Figure 5.1: Test with synthetic data: (a) the calibration error (note that
the arrows are scaled, average value is 0.35 pixels), (b) dependence of the
calibration error in the image plane on noise

Figure 5.2(a) shows the development of the calibration error during an iter-
ative process for 3, 4 and 6 planes. This test was initiated with worse guess
of intrinsic camera parameters that the previous ones. After a few iteration
the improvement of the error is small. The values of the parameters also do
not change significantly with increasing number of iterations as can be seen
in Table 5.8.

Table 5.8: Development of the calibration error and intrinsic parameters with
increasing number of iterations

‘No. of iterations‘ Error ‘ f ‘ Ug ‘ U ‘ by ‘ by ‘
5 0.2295 | 1141 | 356 | 274 | 0.00211 | —0.00033
10 0.2062 | 1132 | 357 | 279 | 0.00243 | —0.00017
15 0.2058 | 1132 | 357 | 280 | 0.00253 | —0.00001
20 0.2045 | 1132 | 357 | 280 | 0.00264 | —0.00013
25 0.2035 | 1132 | 357 | 280 | 0.00274 | —0.00027
30 0.2025 | 1132 [ 357 | 280 | 0.00284 | —0.00042
| Ideal values | 0 [1136] 363|280 | 0.02639 | —0.00002 |

The dependence of the calibration error on number of planes for various noise
level is depicted in Figure 5.2(b). It is clearly visible that large number of
views does not necessary result in more accurate results.
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Figure 5.2: Experiments with synthetic data: (a) Calibration error in image
plane for 2, 3, and 6 planes. (b) Dependence of the calibration error on noise
and different number of planes planes (b)

5.2 Tests with Real Data

In this part of the experiments, the calibration target was a regular grid
printed on A4 paper by a laser printer. The grid consisted of 6 rows and 5
columns of lines which were 4cm in distance (see Figure 5.4(a)). To ensure
the collinearity of the control points, the paper was fixed by a thin plate of
glass.

Line crossings (Section 2.2) were chosen as control points because they can
be easily detected and the calibration object was relatively small and in short
distance off the camera. About 20 of control points were manually detected
in each image with precision about half a pixel. The manual detection was
performed in order to avoid additional errors caused by misdetected points.

The images, sampled to 768 x 576 pixels, were acquired by a JVC TK-S310EG
camera equipped with Meopta OPTICON 1.4/16 lenses. The camera was
connected to the SGI Indy workstation with a standard framegrabber. The
total number of 12 images was taken under the same camera settings: the
aperture set to 8 and the camera focused at the distance of 0.6 meters. The
scene was illuminated from top by one light source. The experimental setup
is shown in Figure 5.3.

Figure 5.4(a) shows one of the images of the scene. Enlarged area around
one of the control point together with its detected position is shown in Fig-
ure 5.4(b). Note that the lines span multiple pixels and the control points is
detected with sub pixel precision.
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Figure 5.3: Experimental setup. The camera in the basic position is in the
middle top accompanied by the light source. The calibration grid is at the
bottom

(b)

Figure 5.4: Example of calibration images: (a) Image taken by the cam-
era, (b) enlarged intersection of lines with manually detected control point,
marked with x
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Figure 5.5: Experiments on real data: (a) calibration error for the refer-
ence view (note that the arrows are scaled, average value is 0.89 pixels), (b)
calibration error for different number of views (2 and 6 planes)

Figure 5.5 (a) shows the calibration error (Eq. 5.3) for the reference view.
As can be noticed, there is no systematic linear distortion. The mean of the
error is 0.89 pixels, note that the arrows are scaled. Possible influence of
the barrel lens distortion (Chapter 1) can be observed (compare with Fig-
ure 5.1(a) where nonlinear distortions are not present). Figure 5.5(b) shows
the development of the calibration error with increasing number of iterations
for 2 and 6 views. In the case when 6 planes were used, the method converges
after a few iterations. The insufficiency of only 2 views is also demonstrated
in this figure, it can be seen that the calibration error starts to grow after
the second iteration.

Table 5.9: Calibration error and intrinsic parameters for different number of
views, real data. See text for a description

‘ No. of views ‘ Error ‘ f ‘ g ‘ v ‘ by ‘ by ‘
Initial guess | 3.8014 | 1500 | 353 | 286 0 0
2 0.7188 | 1580 | 409 | 420 | —0.00505 | —0.01252
3 1.0019 | 1483 | 400 | 297 | —0.00270 | —0.00320
4 0.9718 | 1479 | 404 | 279 | —0.00089 | —0.00071
5 0.9642 | 1483 | 397 | 275 | —0.00095 0.00045
6 0.9171 | 1484 | 397 | 277 | —0.00120 0.00080
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Table 5.9 shows the resulting values of intrinsic parameters and the calibra-
tion error (Eq. 5.3). The table has similar layout as Table 5.2, except that
the ideal values could not be obtained for the real camera. According to
the available informations, the value of the focal length should be around
16 mm after conversion into millimeters and the coordinates of the center of
the image are 384 and 288. The approximated values of the principal point
are not far from this estimate. This is common in real cameras although
the principal point can be even of 60 pixels far from the center of the image
plane [HS97]. The calibration error is smaller than 1 pixel. It can be consid-
ered as a good result because the control points were detected manually and
nonlinear distortions were not modeled.

5.3 Comparison with Other Calibration
Methods

The proposed method was compared with other freely available camera cal-
ibration methods. The most popular one is the method of R. Tsai [Tsa87],
because most of the people think that it is the best method available. An-
other method distributed freely was developed by J. Heikkild and O. Silvén
[HS97].

The methods were compared on both synthetic and real data. Similar condi-
tion were simulated, although the Tsai’s method uses only one view, while the
other two methods need more views of a coplanar target. In that case, four
regularly distributed views were used. For the synthetic data, the resulting
intrinsic parameters and calibration error are listed in Table 5.10. Because
an ideal camera was simulated, all the parameters were a priori known. The
data were not blurred by any noise. There were 30 points detected in each
view.

Exact values of camera parameters were not available for the test with real
data. Only basic camera parameters like the nominal focal length and the
camera resolution were obtained from the camera. The size of the CCD
chip in millimeters needed for the conversion of the focal length from pixels
to millimeters was unknown. Therefore the values of the focal length f in
Table 5.11 could not be computed.

As can be noticed, the Tsai’s method with a full optimization gives incorrect
results, especially the principal point is estimated far away from the correct
position. On the other hand, the basic variant of this method does not change
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the initial estimate of the principal point at all. That is why the method is
unable to estimate precise results.

Table 5.10: Comparison of methods, synthetic data

Parameter Ideal Proposed | Heikkila Tsai Tsai (full

name value method and Silvén | (basic) optim.)

f [pixels] 1136 1152 1147 999 1037

f [mm] 12.50 12.67 12.62 10.99 11.41

up [pixels] 363 363 363 353 262

vo [pixels] 280 279 280 286 137

error [pixels] | 0 0.23 0.0002 0.77 0.57

time [s] — 253 24 0.09 0.9
Table 5.11: Comparison of methods, real data

Parameter Approx. || Proposed Heikkila Tsai Tsai (full

name value method and Silvén | (basic) optim.)

[ [pixels] ? 1513 ? ? ?

f [mm] ~16.20 ? 16.64 20.32 19.55

ug [pixels] ~384 400 428 353 197

vy [pixels] ~288 292 314 286 330

error [pixels] | ~0.5 0.92 0.36 1.59 0.66

time [s] — 245 11 0.06 1.75

The sensitivity to noise was tested for all the methods. This test was per-
formed on synthetic data. The results are shown in Figure 5.6. All the
methods show linear dependence of the calibration error to noise. The basic
method of Tsai has larger error due to the use of only one view of a coplanar
calibration target and constant value of principal point. Both the proposed
method and the method of J. Heikkild and O. Silvén give the precision of the
calibration of the same order, except the ideal case with no noise, where the
proposed method performs worse.

The following two tests were also performed on synthetic data. The first one
evaluates the precision of the estimation of the focal length with increasing
noise level. The result is depicted in Figure 5.7(a). The methods based on
nonlinear optimization of all camera parameters (Tsai with full optimization,
Heikkild and Silvén) show significant variance in the estimation of the focal
length. The proposed method gives the value of the focal length close to the
ideal one even for bigger noise level.

The second test verifies the precision of the estimation of the principal point,
again for various noise level. The results are depicted in Figure 5.7(b) as



CHAPTER 5. EXPERIMENTAL RESULTS 43

(o2}

—— Proposed method Y
-=- Heikkila and Silven - a
| - Tsai full optim. A
v Tsai basic _ -

a

N w B

mean error in the image plane [pixels]
[}

o "

0 1 2 3 4 5
standard deviation of noise [pixels]

Figure 5.6: A comparison of the calibration methods. See text for a descrip-
tion

a distance of the estimated principal point from its ideal position. Again,
the methods based on the nonlinear optimization show significant variation
in the accuracy of the estimation. Especially the Tsai’s method with full
optimization, which was unable to estimate the correct value even when no
noise was present in the data. The proposed method gives reliable results for
standard deviation of noise up to 2 pixels. As can be noticed, the proposed
method estimates the principal point with error which is dependent on noise.
This differs from the methods based on optimization, where the error is
random.

An important aspect is the computation time of the methods. The values are
incomparable. Tsai’s method is implemented in C and it exploits only one
view. The method of J. Heikkild and O. Silvén and the proposed method are
both implemented in MATLAB. But the former uses its own minimization
routine especially optimized for the task while the latter utilizes a general
optimization toolkit. Without additional information such as gradients the
general optimization toolkit requires large number of iteration to reach an
optimal solution, which results in enormous computation time.
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Figure 5.7: A comparison of the calibration methods. (a) estimation of the
focal length, (b) the distance of the estimated principal point from its ideal
position in pixels

5.4 Discussion

The experiments have verified that the proposed method is stable and robust
against an error in the initial estimate of intrinsic parameters and to noise.
More experiments have to be done with precise measured calibration object
to prove the precision of the method. On the other hand, the convergence is
slow when certain error level is reached.

Moreover, non-linear lens distortions are not modeled, but the method can be
extended to do so. One possible way is to pass the resulting intrinsic param-
eters to the method of J. Heikkild and O. Silvén [HS97] as the initial guess.
Another possibility is to extend the minimization proposed in Section 3.7
with the non-linear distortion coefficients.

The main advantage of the simulation of the virtual 3D object is the constant
dimension of the searching space of the nonlinear optimization, which is used
in the method, for any number of views. Thanks to this fact, the method
does not show random errors in the estimation of the camera parameters like
the fully optimized method of R. Tsai.



Chapter 6

Conclusion and Outlook

Geometrical camera calibration is one of the basic tasks in computer vision.
The character of the problem determines the requirements on the calibration
method. Sometimes the high accuracy is needed, sometimes there are certain
specifications of the calibration target or of the conditions under which the
calibration should be performed.

The researchers are always limited in resources. This also influences the
decision of what method to choose. The production of a 3D calibration object
and precise measurement of coordinates of control points on this object is
not always accessible to university students and small research facilities.

A 2D calibration object is a solution to the mentioned problems. But it intro-
duces another problem, the need of an initial guess of some of the parameters
of a camera. The constrained simulation of the 3D calibration object using
a 2D one requires a special equipment, usually a robot. Such equipment is
rarely available to small research teams.

The proposed method combines the advantages of a 2D calibration object
with the extraction of the full set of the camera parameters. Although the
method requires an initial guess of the intrinsic parameters of the camera,
their exact values are not necessary. An iterative process refines the values
of all camera parameters.

The experiments have shown that the method gives reliable results. In com-
parison with the most widely used method of R. Tsai, the proposed method
performed better. On the other hand, it requires multiple views of a coplanar
target.

Optimization routine used in the proposed method is a general one, thus
needing a large number of iterations to find an optimal solution. This results

45



CHAPTER 6. CONCLUSION AND OUTLOOK 46

in a long time of the computation. The determination of the gradients may
speed this part of the method.

Another proposal for further research is to extend the method to model also
the non-linear distortions. This can be done by implementing a two stage
method. The first stage is the proposed method, the second one is the non-
linear optimization of all the intrinsic parameters including the non-linear
ones, using output from the proposed method as an initial guess.



Appendix A

Description of the Calibration
Toolbox

The proposed method was implemented in the MATLAB toolbox available
as a UNIX tar archive or ZIP archive for Windows platform [Bak99]. The
toolbox requires version 5.0 or above of MATLAB.

The directory structure of the toolbox distribution is as follows:

e samples contains sample data

— samples/images sample images form real data experiment
— samples/coords coordinates of reference points detected in sample
images

e m MATLAB files implementing the calibration method

e solvopt optimization routine used by the method’s implementation

There are also several files in the root directory. The README file contains
user instructions and the demo.m file contains a MATLAB function demo,
which implements a simple demonstration of presented method.

The main function implementing the proposed method are commented. All
the functions contain help information. Each file contains one function, and
has the same name with the .m extension.

47
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Toolbox User Instructions

The calibration is performed by the function calibr8. It has a variable
number of arguments, but first three have always be passed. These are
the initial estimate of the intrinsic parameters, the maximum number of
iterations and the desired precision level. The first parameter, the initial
estimate of intrinsic parameters, is represented by a vector of the following
parameters: the focal length, the uy and vy coordinates of center of CCD chip
linear distortion coefficients b; and by. The second parameter, the maximum
number of iterations, is and integer number larger than zero and the third
one, the precision level, is a positive floating point number.

Next parameters specify the measured data. For each plane is one variable
Their number is optional. At least two planes are needed for the method to
succeed. The coordinates are in form of a n by 5 matrix, where each row
specifies the pairs of coordinates of control points and their images and n is
a number of such a pairs in the plane. The first three columns of the matrix
represent the z;, 1; and z coordinate of the reference point. The fourth
and the fifth column represents the u; and v; coordinate of the appropriate
detected image of such a point.

The function returns four parameters. The first one is a vector of estimated
intrinsic parameters having the same form as the initial estimate parameter
of the function. Next parameters are the estimated translation and rotation
matrices of the camera and errors in each plane.

The function demoimplements simple demonstration of the proposed method.
First it adds all necessary directories into the path, where MATLAB searches
for functions. Then it loads the demo data located in the samples/coords
directory and runs the calibration by invoking the calibr8 function with the

48
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demo data. After the calibration is finished, the results are being displayed
along with graphs of the resulting errors.



Appendix C

Example of the Calibration
Process

A typical session with the proposed calibration toolbox is similar to this one:
At the beginning, the command:
>> load coordinates

loads the data file containing the pairs of coordinates of control points and
the appropriate images. Part of a real set of coordinates is listed bellow:

40 0 O 752 270
80 0 0 674.50 196
120 0 0 585.50 112.50
160 0 0 484.80 19

In this example, the coordinates were stored in variables PC1, PC2, PC3,
PC4, each variable respective to one view. The calibration was performed
by invoking the method calibr8 :

>> [Te, Re, Ine, errs] = calibr8( [1600, 353, 286, 0, 0], 10,
0.5, PC1, PC2, PC3, PC4 );

where [1600, 353, 286, 0, 0] is the vector containing the initial guess
of the intrinsic parameters of the camera, 10 is the maximum number of
iterations and 0.5 is the desired precision level. The resulting translation,
rotation, intrinsic parameters estimated by the method together with the
error history are stored in variables Te , Re , Ine and errs respectively.

The method displays progress information. At the beginning the calibration
error caused by the initial guess of the intrinsic parameters. The the results
after optimization of the extrinsic parameters, their values are displayed.
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This is done for every invocation of this step of the computation, this means
for all views. At the end of each iteration, the calibration error with the new
intrinsic parameters and their values are printed. The example output of the
method covering one iteration is listed bellow:

120 points, estimated DLT:
1.5439 0.7608 -0.7187 249.9731
0.2869 1.1767 1.5376 154.3196
0.0009 -0.0005 0.0007 1.0000

Mean and shift for each axis:

X: 4.101229, -0.012829

Y: 5.906514, -0.039893
Errors in the object space: mean = 7.577898, max = 20.127003,
std = 4.543999

This is the calibration error for the initial guess of the intrinsic parameters.
Before any extrinsic camera parameter is estimated, the following line is
printed:

translation: x, y, z; rotation: alpha, beta, gamma

For each invocation of the estimation of the extrinsic parameters, the method
produces this line of output:

SolvOpt: Normal termination.
482.8, -429.5, 350.1; 0.748789, 0.804025, 0.002295

The first line is an output of the optimization routine informing that it suc-
ceeded. Then the g, 19, 20 members of the translation matrix are printed,
followed by the rotation expressed by Euler angles, which are in radians.

SolvOpt: Normal termination.

-569.7, -429.8, 353.1; 0.745466, -0.804458, -0.002345
SolvOpt: Normal termination.

484.7, 338.1, 351.6; -0.771088, 0.798795, 0.015045
SolvOpt: Normal termination.

-630.9, 448.7, 471.2; -0.768865, -0.789374, -0.015623
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At the end of the iteration, the DLT matrix estimated in the fourth step of
the method is printed out together with the calibration error with respective
camera parameters:

120 points, estimated DLT:
1.6034 0.6006 -0.6813 246.2251
0.2983 1.0848 1.4120 150.2781
0.0010 -0.0007 0.0007 1.0000
Mean and shift for each axis:
X: 0.424818, 0.000713
Y: 0.507010, -0.002942
Errors in the object space: mean = 0.718496, max = 2.223070,
std = 0.378237
count =
2
f1: 1213.605011, u0: 347.735054, vO: 228.109121,
bil: 0.000867, b2: 0.000241

The intrinsic parameters (focal length £, principal point pp and linear dis-
tortion coefficients b) were estimated as follows:

>> f = Ine(1);pp(1) = Ine(2); pp(2) = Ine(3); b(1l) = Ine(4);
b(2) = Ine(5);f, pp, b
f =
1.1319e+03
pp =

357.0296 279.2778
b =
0.0020 -0.0001

The rotation was returned in the form of the rotation matrix:

>> Re

Re =
0.6991 0.4896 -0.5210
0.0010 0.7281 0.6855
0.7150 -0.4798 0.5085
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To get a convenient representation of the rotation, the Euler angles (in de-
grees) are computed from the rotation matrix, as shown bellow:

>> [ox, fy, kz] = deeuler_deg( Re )
0x =
43.3323
fy =
45.6438
kz =
-0.0798

The translation matrix was computed as:

>> Te
Te =
1.0000 0 409.2888
0 1.0000 -386.9472
0 0 305.0442

Regarding to the practical realization of the method, the translation of the
camera (in millimeters) is encoded in the translation matrix, and should be
extracted from it by premultiplying with the rotation matrix:

>> Re * Te(:,3)
ans =
-62.6208
-72.0801
633.3881

The results of the calibration are the intrinsic parameters: focal length £ =
1131, principal point pp = [357, 279] and linear distortion coefficients b
= [0.0020, -0.0001], the rotation of the camera (represented in Euler an-
gles): [43.33, 45.64, -0.07] and the translation vector (in millimeters):
[-62.62, -72.08, 633.38].
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