

Release 9.7
Release date September 2012

Licence LGPL
Toolbox home page http://www.petercorke.com/robot
Discussion group http://groups.google.com.au/group/robotics-tool-box

Copyright c©2012 Peter Corke
peter.i.corke@gmail.com
http://www.petercorke.com

http://www.petercorke.com/robot
http://groups.google.com.au/group/robotics-tool-box
http://www.petercorke.com

3

Preface

Peter C0rke

The practice of robotics and computer vision
each involve the application of computational algo-

rithms to data. The research community has devel-
oped a very large body of algorithms but for a
newcomer to the field this can be quite daunting.

For more than 10 years the author has maintained two open-
source matlab® Toolboxes, one for robotics and one for vision.
They provide implementations of many important algorithms and
allow users to work with real problems, not just trivial examples.

This new book makes the fundamental algorithms of robotics,
vision and control accessible to all. It weaves together theory, algo-
rithms and examples in a narrative that covers robotics and com-
puter vision separately and together. Using the latest versions
of the Toolboxes the author shows how complex problems can be
decomposed and solved using just a few simple lines of code.
The topics covered are guided by real problems observed by the
author over many years as a practitioner of both robotics and
computer vision. It is written in a light but informative style, it is
easy to read and absorb, and includes over 1000 matlab® and
Simulink® examples and figures. The book is a real walk through
the fundamentals of mobile robots, navigation, localization, arm-
robot kinematics, dynamics and joint level control, then camera
models, image processing, feature extraction and multi-view
geometry, and finally bringing it all together with an extensive
discussion of visual servo systems.

Peter Corke

Robotics,
 Vision
 and
 Control

Robotics, Vision and Control

isbn 978-3-642-20143-1

1

› springer.com
123

Corke

FUNDAMENTAL
ALGORITHMS
IN MATL AB®

783642 2014319

Robotics,
 Vision
 and
 Control

This, the ninth release of the Toolbox, represents
over fifteen years of development and a substan-
tial level of maturity. This version captures a large
number of changes and extensions generated over
the last two years which support my new book
“Robotics, Vision & Control” shown to the left.

The Toolbox has always provided many functions
that are useful for the study and simulation of clas-
sical arm-type robotics, for example such things
as kinematics, dynamics, and trajectory generation.
The Toolbox is based on a very general method of
representing the kinematics and dynamics of serial-
link manipulators. These parameters are encapsu-
lated in MATLAB

R©
objects — robot objects can be

created by the user for any serial-link manipulator
and a number of examples are provided for well know robots such as the Puma 560
and the Stanford arm amongst others. The Toolbox also provides functions for manip-
ulating and converting between datatypes such as vectors, homogeneous transforma-
tions and unit-quaternions which are necessary to represent 3-dimensional position and
orientation.

This ninth release of the Toolbox has been significantly extended to support mobile
robots. For ground robots the Toolbox includes standard path planning algorithms
(bug, distance transform, D*, PRM), kinodynamic planning (RRT), localization (EKF,
particle filter), map building (EKF) and simultaneous localization and mapping (EKF),
and a Simulink model a of non-holonomic vehicle. The Toolbox also including a de-
tailed Simulink model for a quadcopter flying robot.

The routines are generally written in a straightforward manner which allows for easy
understanding, perhaps at the expense of computational efficiency. If you feel strongly
about computational efficiency then you can always rewrite the function to be more
efficient, compile the M-file using the MATLAB

R©
compiler, or create a MEX version.

The manual is now auto-generated from the comments in the MATLAB
R©

code itself
which reduces the effort in maintaining code and a separate manual as I used to — the
downside is that there are no worked examples and figures in the manual. However the
book “Robotics, Vision & Control” provides a detailed discussion (600 pages, nearly
400 figures and 1000 code examples) of how to use the Toolbox functions to solve

Robotics Toolbox 9.7 for MATLAB
R©

4 Copyright c©Peter Corke 2012

many types of problems in robotics, and I commend it to you.

Robotics Toolbox 9.7 for MATLAB
R©

5 Copyright c©Peter Corke 2012

Contents

Introduction . 4

1 Introduction 9
1.1 What’s changed . 9

1.1.1 Documentation . 9
1.1.2 Changed behaviour . 9
1.1.3 New functions . 10
1.1.4 Improvements . 12

1.2 How to obtain the Toolbox . 12
1.2.1 Documentation . 13

1.3 MATLAB version issues . 13
1.4 Use in teaching . 13
1.5 Use in research . 13
1.6 Support . 14
1.7 Related software . 14

1.7.1 Octave . 14
1.7.2 Python version . 15
1.7.3 Machine Vision toolbox . 15

1.8 Acknowledgements . 15

2 Functions and classes 16
about . 16
angdiff . 16
angvec2r . 17
angvec2tr . 17
bresenham . 17
Bug2 . 18
circle . 19
colnorm . 19
ctraj . 20
delta2tr . 20
DHFactor . 20
diff2 . 22
distancexform . 22
Dstar . 23
DXform . 28
e2h . 31
EKF . 31

Robotics Toolbox 9.7 for MATLAB
R©

6 Copyright c©Peter Corke 2012

CONTENTS CONTENTS

eul2jac . 38
eul2r . 38
eul2tr . 39
gauss2d . 40
h2e . 40
homline . 40
homtrans . 41
ishomog . 41
isrot . 42
isvec . 42
jtraj . 43
Link . 43
lspb . 50
Map . 51
mdl Fanuc10L . 53
mdl MotomanHP6 . 54
mdl puma560 . 54
mdl puma560akb . 55
mdl quadcopter . 56
mdl S4ABB2p8 . 57
mdl stanford . 57
mdl twolink . 58
mstraj . 59
mtraj . 60
Navigation . 60
numcols . 66
numrows . 67
oa2r . 67
oa2tr . 67
ParticleFilter . 68
peak . 72
peak2 . 72
PGraph . 73
plot2 . 87
plot arrow . 87
plot box . 88
plot circle . 88
plot ellipse . 88
plot homline . 89
plot point . 89
plot poly . 90
plot sphere . 90
plot vehicle . 91
plotbotopt . 92
plotp . 92
polydiff . 92
Polygon . 93
PRM . 97
qplot . 100
Quaternion . 100

Robotics Toolbox 9.7 for MATLAB
R©

7 Copyright c©Peter Corke 2012

CONTENTS CONTENTS

r2t . 109
randinit . 110
RandomPath . 110
RangeBearingSensor . 113
rotx . 117
roty . 117
rotz . 118
rpy2jac . 118
rpy2r . 118
rpy2tr . 119
RRT . 120
rt2tr . 123
rtdemo . 124
se2 . 124
Sensor . 125
SerialLink . 126
skew . 147
startup rtb . 148
t2r . 148
tb optparse . 149
tpoly . 150
tr2angvec . 150
tr2delta . 151
tr2eul . 151
tr2jac . 152
tr2rpy . 152
tr2rt . 153
tranimate . 154
transl . 155
trinterp . 155
trnorm . 156
trotx . 156
troty . 157
trotz . 157
trplot . 158
trplot2 . 159
trprint . 160
unit . 161
Vehicle . 161
vex . 169
wtrans . 170
xaxis . 170
xyzlabel . 171
yaxis . 171

Robotics Toolbox 9.7 for MATLAB
R©

8 Copyright c©Peter Corke 2012

Chapter 1

Introduction

1.1 What’s changed

1.1.1 Documentation

• The manual (robot.pdf) no longer a separately written document. This was just
too hard to keep updated with changes to code. All documentation is now in the
m-file, making maintenance easier and consistency more likely. The negative
consequence is that the manual is a little “drier” than it used to be.

• The Functions link from the Toolbox help browser lists all functions with hyper-
links to the individual help entries.

• Online HTML-format help is available from http://www.petercorke.
com/RTB/r9/html

1.1.2 Changed behaviour

Compared to release 8 and earlier:

• The command startup rvc should be executed before using the Toolbox.
This sets up the MATLAB search paths correctly.

• The Robot class is now named SerialLink to be more specific.

• Almost all functions that operate on a SerialLink object are now methods rather
than functions, for example plot() or fkine(). In practice this makes little dif-
ference to the user but operations can now be expressed as robot.plot(q) or
plot(robot, q). Toolbox documentation now prefers the former convention which
is more aligned with object-oriented practice.

• The parametrers to the Link object constructor are now in the order: theta, d,
a, alpha. Why this order? It’s the order in which the link transform is created:
RZ(theta) TZ(d) TX(a) RX(alpha).

• All robot models now begin with the prefix mdl , so puma560 is now mdl puma560.

Robotics Toolbox 9.7 for MATLAB
R©

9 Copyright c©Peter Corke 2012

http://www.petercorke.com/RTB/r9/html
http://www.petercorke.com/RTB/r9/html

1.1. WHAT’S CHANGED CHAPTER 1. INTRODUCTION

• The function drivebot is now the SerialLink method teach.

• The function ikine560 is now the SerialLink method ikine6s to indicate that it
works for any 6-axis robot with a spherical wrist.

• The link class is now named Link to adhere to the convention that all classes
begin with a capital letter.

• The robot class is now called SerialLink. It is created from a vector of
Link objects, not a cell array.

• The quaternion class is now named Quaternion to adhere to the convention that
all classes begin with a capital letter.

• A number of utility functions have been moved into the a directory common
since they are not robot specific.

• skew no longer accepts a skew symmetric matrix as an argument and returns a
3-vector, this functionality is provided by the new function vex.

• tr2diff and diff2tr are now called tr2delta and delta2tr

• ctraj with a scalar argument now spaces the points according to a trapezoidal
velocity profile (see lspb). To obtain even spacing provide a uniformly spaced
vector as the third argument, eg. linspace(0, 1, N).

• The RPY functions tr2rpy and rpy2tr assume that the roll, pitch, yaw rotations
are about the X, Y, Z axes which is consistent with common conventions for
vehicles (planes, ships, ground vehicles). For some applications (eg. cameras)
it useful to consider the rotations about the Z, Y, Z axes, and this behaviour can
be obtained by using the option ’zyx’ with these functions (note this is the pre
release 8 behaviour).

• Many functions now accept MATLAB style arguments given as trailing strings,
or string-value pairs. These are parsed by the internal function tb optparse.

1.1.3 New functions

Release 9 introduces considerable new functionality, in particular for mobile robot con-
trol, navigation and localization:

• Mobile robotics:

Vehicle Model of a mobile robot that has the “bicycle” kinematic model (car-
like). For given inputs it updates the robot state and returns noise corrupted
odometry measurements. This can be used in conjunction with a “driver”
class such as RandomPath which drives the vehicle between random way-
points within a specified rectangular region.

Sensor

RangeBearingSensor Model of a laser scanner RangeBearingSensor, subclass
of Sensor, that works in conjunction with a Map object to return range and
bearing to invariant point features in the environment.

Robotics Toolbox 9.7 for MATLAB
R©

10 Copyright c©Peter Corke 2012

1.1. WHAT’S CHANGED CHAPTER 1. INTRODUCTION

EKF Extended Kalman filter EKF can be used to perform localization by dead
reckoning or map featuers, map buildings and simultaneous localization
and mapping.

DXForm Path planning classes: distance transform DXform, D* lattice planner
Dstar, probabilistic roadmap planner PRM, and rapidly exploring random
tree RRT.

Monte Carlo estimator ParticleFilter.

• Arm robotics:

jsingu

jsingu

qplot

DHFactor a simple means to generate the Denavit-Hartenberg kinematic model
of a robot from a sequence of elementary transforms.

• Trajectory related:

lspb

tpoly

mtraj

mstraj

• General transformation:

wtrans

se2

se3

homtrans

vex performs the inverse function to skew, it converts a skew-symmetric matrix
to a 3-vector.

• Data structures:

Pgraph represents a non-directed embedded graph, supports plotting and mini-
mum cost path finding.

Polygon a generic 2D polygon class that supports plotting, intersectio/union/difference
of polygons, line/polygon intersection, point/polygon containment.

• Graphical functions:

trprint compact display of a transform in various formats.

trplot display a coordinate frame in SE(3)

trplot2 as above but for SE(2)

tranimate animate the motion of a coordinate frame

Robotics Toolbox 9.7 for MATLAB
R©

11 Copyright c©Peter Corke 2012

1.2. HOW TO OBTAIN THE TOOLBOX CHAPTER 1. INTRODUCTION

plot box plot a box given TL/BR corners or center+WH, with options for edge
color, fill color and transparency.

plot circle plot one or more circles, with options for edge color, fill color and
transparency.

plot sphere plot a sphere, with options for edge color, fill color and trans-
parency.

plot ellipse plot an ellipse, with options for edge color, fill color and trans-
parency.

]plot ellipsoid] plot an ellipsoid, with options for edge color, fill color and trans-
parency.

plot poly plot a polygon, with options for edge color, fill color and transparency.

• Utility:

about display a one line summary of a matrix or class, a compact version of
whos

tb optparse general argument handler and options parser, used internally in
many functions.

• Lots of Simulink models are provided in the subdirectory simulink. These
models all have the prefix sl .

1.1.4 Improvements

• Many functions now accept MATLAB style arguments given as trailing strings,
or string-value pairs. These are parsed by the internal function tb optparse.

• Many functions now handle sequences of rotation matrices or homogeneous
transformations.

• Improved error messages in many functions

• Removed trailing commas from if and for statements

1.2 How to obtain the Toolbox

The Robotics Toolbox is freely available from the Toolbox home page at

http://www.petercorke.com

The web page requests some information from you regarding such as your country,
type of organization and application. This is just a means for me to gauge interest and
to remind myself that this is a worthwhile activity.

The file is available in zip format (.zip). Download it and unzip it. Files all unpack to
the correct parts of a hiearchy of directories (folders) headed by rvctools.

Robotics Toolbox 9.7 for MATLAB
R©

12 Copyright c©Peter Corke 2012

http://www.petercorke.com

1.3. MATLAB VERSION ISSUES CHAPTER 1. INTRODUCTION

If you already have the Machine Vision Toolbox installed then download the zip file to
the directory above the existing rvctools directory, and then unzip it. The files from
this zip archive will properly interleave with the Machine Vision Toolbox files.

Ensure that the folder rvctools is on your MATLAB
R©

search path. You can do
this by issuing the addpath command at the MATLAB

R©
prompt. Then issue the

command startup rvc and it will add a number of paths to your MATLAB
R©

search
path. You need to setup the path every time you start MATLAB

R©
but you can automate

this by setting up environment variables, editing your startup.m script by pressing
the “Update Toolbox Path Cache” button under MATLAB

R©
General preferences.

A menu-driven demonstration can be invoked by the function rtdemo.

1.2.1 Documentation

The file robot.pdf is a manual that describes all functions in the Toolbox. It is
auto-generated from the comments in the MATLAB

R©
code and is fully hyperlinked:

to external web sites, the table of content to functions, and the “See also” functions to
each other.

The same documentation is available online in alphabetical order at http://www.
petercorke.com/RTB/r9/html/index_alpha.html or by category at http:
//www.petercorke.com/RTB/r9/html/index.html. Documentation is also
available via the MATLAB

R©
help browser, “Robotics Toolbox” appears under the

Contents.

1.3 MATLAB version issues

The Toolbox has been tested under R2012a.

1.4 Use in teaching

This is definitely encouraged! You are free to put the PDF manual (robot.pdf or
the web-based documentation html/*.html on a server for class use. If you plan to
distribute paper copies of the PDF manual then every copy must include the first two
pages (cover and licence).

1.5 Use in research

If the Toolbox helps you in your endeavours then I’d appreciate you citing the Toolbox
when you publish. The details are

@ARTICLE{Corke96b,
AUTHOR = {P.I. Corke},
JOURNAL = {IEEE Robotics and Automation Magazine},

Robotics Toolbox 9.7 for MATLAB
R©

13 Copyright c©Peter Corke 2012

http://www.petercorke.com/RTB/r9/html/index_alpha.html
http://www.petercorke.com/RTB/r9/html/index_alpha.html
http://www.petercorke.com/RTB/r9/html/index.html
http://www.petercorke.com/RTB/r9/html/index.html

1.6. SUPPORT CHAPTER 1. INTRODUCTION

MONTH = mar,
NUMBER = {1},
PAGES = {24-32},
TITLE = {A Robotics Toolbox for {MATLAB}},
VOLUME = {3},
YEAR = {1996}

}

or

“A robotics toolbox for MATLAB”,
P.Corke,
IEEE Robotics and Automation Magazine,
vol.3, pp.2432, Sept. 1996.

which is also given in electronic form in the README file.

1.6 Support

There is no support! This software is made freely available in the hope that you find
it useful in solving whatever problems you have to hand. I am happy to correspond
with people who have found genuine bugs or deficiencies but my response time can
be long and I can’t guarantee that I respond to your email. I am very happy to accept
contributions for inclusion in future versions of the toolbox, and you will be suitably
acknowledged.

I can guarantee that I will not respond to any requests for help with assignments
or homework, no matter how urgent or important they might be to you. That’s
what your teachers, tutors, lecturers and professors are paid to do.

You might instead like to communicate with other users via the Google Group called
“Robotics and Machine Vision Toolbox”

http://groups.google.com.au/group/robotics-tool-box

which is a forum for discussion. You need to signup in order to post, and the signup
process is moderated by me so allow a few days for this to happen. I need you to write a
few words about why you want to join the list so I can distinguish you from a spammer
or a web-bot.

1.7 Related software

1.7.1 Octave

Octave is an open-source mathematical environment that is very similar to MATLAB
R©

, but it has some important differences particularly with respect to graphics and classes.
Many Toolbox functions work just fine under Octave. Three important classes (Quater-
nion, Link and SerialLink) will not work so modified versions of these classes is pro-
vided in the subdirectory called Octave. Copy all the directories from Octave to
the main Robotics Toolbox directory.

Robotics Toolbox 9.7 for MATLAB
R©

14 Copyright c©Peter Corke 2012

http://groups.google.com.au/group/robotics-tool-box

1.8. ACKNOWLEDGEMENTS CHAPTER 1. INTRODUCTION

The Octave port is a second priority for support and upgrades and is offered in the hope
that you find it useful.

1.7.2 Python version

A python implementation of the Toolbox at http://code.google.com/p/robotics-toolbox-python.
All core functionality of the release 8 Toolbox is present including kinematics, dynam-
ics, Jacobians, quaternions etc. It is based on the python numpy class. The main
current limitation is the lack of good 3D graphics support but people are working on
this. Nevertheless this version of the toolbox is very usable and of course you don’t
need a MATLAB

R©
licence to use it. Watch this space.

1.7.3 Machine Vision toolbox

Machine Vision toolbox (MVTB) for MATLAB
R©

. This was described in an article

@article{Corke05d,
Author = {P.I. Corke},
Journal = {IEEE Robotics and Automation Magazine},
Month = nov,
Number = {4},
Pages = {16-25},
Title = {Machine Vision Toolbox},
Volume = {12},
Year = {2005}}

and provides a very wide range of useful computer vision functions beyond the Math-
work’s Image Processing Toolbox. You can obtain this from http://www.petercorke.
com/vision.

1.8 Acknowledgements

Last, but not least, I have corresponded with a great many people via email since the
first release of this Toolbox. Some have identified bugs and shortcomings in the doc-
umentation, and even better, some have provided bug fixes and even new modules,
thankyou. See the file CONTRIB for details. I’d like to especially mention Wynand
Smart for some arm robot models, Paul Pounds for the quadcopter model, and Paul
Newman (Oxford) for inspiring the mobile robot code.

Robotics Toolbox 9.7 for MATLAB
R©

15 Copyright c©Peter Corke 2012

http://code.google.com/p/robotics-toolbox-python
http://www.petercorke.com/vision
http://www.petercorke.com/vision

Chapter 2

Functions and classes

about
Compact display of variable type

about(x) displays a compact line that describes the class and dimensions of x.

about x as above but this is the command rather than functional form

See also

whos

angdiff
Difference of two angles

d = angdiff(th1, th2) returns the difference between angles th1 and th2 on the circle.
The result is in the interval [-pi pi). If th1 is a column vector, and th2 a scalar then re-
turn a column vector where th2 is modulo subtracted from the corresponding elements
of th1.

d = angdiff(th) returns the equivalent angle to th in the interval [-pi pi).

Return the equivalent angle in the interval [-pi pi).

Robotics Toolbox 9.7 for MATLAB
R©

16 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

angvec2r
Convert angle and vector orientation to a rotation matrix

R = angvec2r(theta, v) is an rthonormal rotation matrix, R, equivalent to a rotation of
theta about the vector v.

See also

eul2r, rpy2r

angvec2tr
Convert angle and vector orientation to a homogeneous trans-
form

T = angvec2tr(theta, v) is a homogeneous transform matrix equivalent to a rotation of
theta about the vector v.

Note

• The translational part is zero.

See also

eul2tr, rpy2tr, angvec2r

bresenham
Generate a line

p = bresenham(x1, y1, x2, y2) is a list of integer coordinates for points lying on the
line segement (x1,y1) to (x2,y2). Endpoints must be integer.

p = bresenham(p1, p2) as above but p1=[x1,y1] and p2=[x2,y2].

Robotics Toolbox 9.7 for MATLAB
R©

17 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

icanvas

Bug2
Bug navigation class

A concrete subclass of the Navigation class that implements the bug2 navigation al-
gorithm. This is a simple automaton that performs local planning, that is, it can only
sense the immediate presence of an obstacle.

Methods

path Compute a path from start to goal
visualize Display the obstacle map (deprecated)
plot Display the obstacle map
display Display state/parameters in human readable form
char Convert to string

Example

load map1 % load the map
bug = Bug2(map); % create navigation object

bug.goal = [50, 35]; % set the goal

bug.path([20, 10]); % animate path to (20,10)

Reference

• Dynamic path planning for a mobile automaton with limited information on the
environment,, V. Lumelsky and A. Stepanov, IEEE Transactions on Automatic
Control, vol. 31, pp. 1058-1063, Nov. 1986.

• Robotics, Vision & Control, Sec 5.1.2, Peter Corke, Springer, 2011.

See also

Navigation, DXform, Dstar, PRM

Robotics Toolbox 9.7 for MATLAB
R©

18 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Bug2.Bug2
bug2 navigation object constructor

b = Bug2(map) is a bug2 navigation object, and map is an occupancy grid, a represen-
tation of a planar world as a matrix whose elements are 0 (free space) or 1 (occupied).

Options

‘goal’, G Specify the goal point (1× 2)
‘inflate’, K Inflate all obstacles by K cells.

See also

Navigation.Navigation

circle
Compute points on a circle

circle(C, R, opt) plot a circle centred at C with radius R.

x = circle(C, R, opt) return an N × 2 matrix whose rows define the coordinates [x,y]
of points around the circumferance of a circle centred at C and of radius R.

C is normally 2× 1 but if 3× 1 then the circle is embedded in 3D, and x is N × 3, but
the circle is always in the xy-plane with a z-coordinate of C(3).

Options

‘n’, N Specify the number of points (default 50)

colnorm
Column-wise norm of a matrix

cn = colnorm(a) is an M × 1 vector of the normals of each column of the matrix a
which is N ×M .

Robotics Toolbox 9.7 for MATLAB
R©

19 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

ctraj
Cartesian trajectory between two points

tc = ctraj(T0, T1, n) is a Cartesian trajectory (4 × 4 × n) from pose T0 to T1 with n
points that follow a trapezoidal velocity profile along the path. The Cartesian trajectory
is a homogeneous transform sequence and the last subscript being the point index, that
is, T(:,:,i) is the i’th point along the path.

tc = ctraj(T0, T1, s) as above but the elements of s (n × 1) specify the fractional dis-
tance along the path, and these values are in the range [0 1]. The i’th point corresponds
to a distance s(i) along the path.

See also

lspb, mstraj, trinterp, Quaternion.interp, transl

delta2tr
Convert differential motion to a homogeneous transform

T = delta2tr(d) is a homogeneous transform representing differential translation and
rotation. The vector d=(dx, dy, dz, dRx, dRy, dRz) represents an infinitessimal motion,
and is an approximation to the spatial velocity multiplied by time.

See also

tr2delta

DHFactor
Simplify symbolic link transform expressions

f = dhfactor(s) is an object that encodes the kinematic model of a robot provided by
a string s that represents a chain of elementary transforms from the robot’s base to its

Robotics Toolbox 9.7 for MATLAB
R©

20 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

tool tip. The chain of elementary rotations and translations is symbolically factored
into a sequence of link transforms described by DH parameters.

For example:

s = ’Rz(q1).Rx(q2).Ty(L1).Rx(q3).Tz(L2)’;

indicates a rotation of q1 about the z-axis, then rotation of q2 about the x-axis, transla-
tion of L1 about the y-axis, rotation of q3 about the x-axis and translation of L2 along
the z-axis.

Methods

base the base transform as a Java string
tool the tool transform as a Java string
command a command string that will create a SerialLink() object representing the specified kine-

matics
char convert to string representation
display display in human readable form

Example

>> s = ’Rz(q1).Rx(q2).Ty(L1).Rx(q3).Tz(L2)’;
>> dh = DHFactor(s);
>> dh
DH(q1+90, 0, 0, +90).DH(q2, L1, 0, 0).DH(q3-90, L2, 0, 0).Rz(+90).Rx(-90).Rz(-90)
>> r = eval(dh.command(’myrobot’));

Notes

• Variables starting with q are assumed to be joint coordinates

• Variables starting with L are length constants.

• Length constants must be defined in the workspace before executing the last line
above.

• Implemented in Java

• Not all sequences can be converted to DH format, if conversion cannot be achieved
an error is generated.

Reference

• A simple and systematic approach to assigning Denavit-Hartenberg parameters,
P.Corke, IEEE Transaction on Robotics, vol. 23, pp. 590-594, June 2007.

• Robotics, Vision & Control, Sec 7.5.2, 7.7.1, Peter Corke, Springer 2011.

Robotics Toolbox 9.7 for MATLAB
R©

21 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

SerialLink

diff2
Two point difference

d = diff2(v) is the 2-point difference for each point in the vector v and the first element
is zero. The vector d has the same length as v.

See also

diff

distancexform
Distance transform of occupancy grid

d = distancexform(world, goal) is the distance transform of the occupancy grid world
with respect to the specified goal point goal = [X,Y]. The elements of the grid are 0
from free space and 1 for occupied.

d = distancexform(world, goal, metric) as above but specifies the distance metric as
either ‘cityblock’ or ‘Euclidean’

d = distancexform(world, goal, metric, show) as above but shows an animation of
the distance transform being formed, with a delay of show seconds between frames.

Notes

• The Machine Vision Toolbox function imorph is required.

• The goal is [X,Y] not MATLAB [row,col]

Robotics Toolbox 9.7 for MATLAB
R©

22 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

imorph, DXform

Dstar
D* navigation class

A concrete subclass of the Navigation class that implements the D* navigation algo-
rithm. This provides minimum distance paths and facilitates incremental replanning.

Methods

plan Compute the cost map given a goal and map
path Compute a path to the goal
visualize Display the obstacle map (deprecated)
plot Display the obstacle map
costmap modify Modify the costmap
modify cost Modify the costmap (deprecated, use costmap modify)
costmap get Return the current costmap
costmap set Set the current costmap
distancemap get Set the current distance map
display Print the parameters in human readable form
char Convert to string

Properties

costmap Distance from each point to the goal.

Example

load map1 % load map
goal = [50,30];
start=[20,10];
ds = Dstar(map); % create navigation object
ds.plan(goal) % create plan for specified goal
ds.path(start) % animate path from this start location

Notes

• Obstacles are represented by Inf in the costmap.

Robotics Toolbox 9.7 for MATLAB
R©

23 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

• The value of each element in the costmap is the shortest distance from the corre-
sponding point in the map to the current goal.

References

• The D* algorithm for real-time planning of optimal traverses, A. Stentz, Tech.
Rep. CMU-RI-TR-94-37, The Robotics Institute, Carnegie-Mellon University,
1994.

• Robotics, Vision & Control, Sec 5.2.2, Peter Corke, Springer, 2011.

See also

Navigation, DXform, PRM

Dstar.Dstar
D* constructor

ds = Dstar(map, options) is a D* navigation object, and map is an occupancy grid,
a representation of a planar world as a matrix whose elements are 0 (free space) or 1
(occupied). The occupancy grid is coverted to a costmap with a unit cost for traversing
a cell.

Options

‘goal’, G Specify the goal point (2× 1)
‘metric’, M Specify the distance metric as ‘euclidean’ (default) or ‘cityblock’.
‘inflate’, K Inflate all obstacles by K cells.
‘quiet’ Don’t display the progress spinner

Other options are supported by the Navigation superclass.

See also

Navigation.Navigation

Dstar.char
Convert navigation object to string

DS.char() is a string representing the state of the Dstar object in human-readable form.

Robotics Toolbox 9.7 for MATLAB
R©

24 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Dstar.display, Navigation.char

Dstar.costmap get
Get the current costmap

C = DS.costmap get() is the current costmap. The cost map is the same size as the
occupancy grid and the value of each element represents the cost of traversing the cell.
It is autogenerated by the class constructor from the occupancy grid such that:

• free cell (occupancy 0) has a cost of 1

• occupied cell (occupancy >0) has a cost of Inf

See also

Dstar.costmap set, Dstar.costmap modify

Dstar.costmap modify
Modify cost map

DS.costmap modify(p, new) modifies the cost map at p=[X,Y] to have the value new.
If p (2×M) and new (1×M) then the cost of the points defined by the columns of p
are set to the corresponding elements of new.

Notes

• After one or more point costs have been updated the path should be replanned
by calling DS.plan().

• Replaces modify cost, same syntax.

See also

Dstar.costmap set, Dstar.costmap get

Robotics Toolbox 9.7 for MATLAB
R©

25 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Dstar.costmap set
Set the current costmap

DS.costmap set(C) sets the current costmap. The cost map is the same size as the
occupancy grid and the value of each element represents the cost of traversing the cell.
A high value indicates that the cell is more costly (difficult) to traverese. A value of Inf
indicates an obstacle.

Notes

• After the cost map is changed the path should be replanned by calling DS.plan().

See also

Dstar.costmap get, Dstar.costmap modify

Dstar.distancemap get
Get the current distance map

C = DS.distancemap get() is the current distance map. This map is the same size
as the occupancy grid and the value of each element is the shortest distance from the
corresponding point in the map to the current goal. It is computed by Dstar.plan.

See also

Dstar.plan

Dstar.modify cost
Modify cost map

Notes

• Deprecated: use modify cost instead instead.

Robotics Toolbox 9.7 for MATLAB
R©

26 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Dstar.costmap set, Dstar.costmap get

Dstar.plan
Plan path to goal

DS.plan() updates DS with a costmap of distance to the goal from every non-obstacle
point in the map. The goal is as specified to the constructor.

DS.plan(goal) as above but uses the specified goal.

Note

• If a path has already been planned, but the costmap was modified, then reinvok-
ing this method will replan, incrementally updating the plan at lower cost than a
full replan.

Dstar.plot
Visualize navigation environment

DS.plot() displays the occupancy grid and the goal distance in a new figure. The goal
distance is shown by intensity which increases with distance from the goal. Obstacles
are overlaid and shown in red.

DS.plot(p) as above but also overlays a path given by the set of points p (M × 2).

See also

Navigation.plot

Dstar.reset
Reset the planner

DS.reset() resets the D* planner. The next instantiation of DS.plan() will perform a
global replan.

Robotics Toolbox 9.7 for MATLAB
R©

27 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

DXform
Distance transform navigation class

A concrete subclass of the Navigation class that implements the distance transform
navigation algorithm which computes minimum distance paths.

Methods

plan Compute the cost map given a goal and map
path Compute a path to the goal
visualize Display the obstacle map (deprecated)
plot Display the distance function and obstacle map
plot3d Display the distance function as a surface
display Print the parameters in human readable form
char Convert to string

Properties

distancemap The distance transform of the occupancy grid.
metric The distance metric, can be ‘euclidean’ (default) or ‘cityblock’

Example

load map1 % load map
goal = [50,30]; % goal point
start = [20, 10]; % start point
dx = DXform(map); % create navigation object
dx.plan(goal) % create plan for specified goal
dx.path(start) % animate path from this start location

Notes

• Obstacles are represented by NaN in the distancemap.

• The value of each element in the distancemap is the shortest distance from the
corresponding point in the map to the current goal.

References

• Robotics, Vision & Control, Sec 5.2.1, Peter Corke, Springer, 2011.

Robotics Toolbox 9.7 for MATLAB
R©

28 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Navigation, Dstar, PRM, distancexform

DXform.DXform
Distance transform constructor

dx = DXform(map, options) is a distance transform navigation object, and map is an
occupancy grid, a representation of a planar world as a matrix whose elements are 0
(free space) or 1 (occupied).

Options

‘goal’, G Specify the goal point (2× 1)
‘metric’, M Specify the distance metric as ‘euclidean’ (default) or ‘cityblock’.
‘inflate’, K Inflate all obstacles by K cells.

Other options are supported by the Navigation superclass.

See also

Navigation.Navigation

DXform.char
Convert to string

DX.char() is a string representing the state of the object in human-readable form.

See also DXform.display, Navigation.char

DXform.plan
Plan path to goal

DX.plan() updates the internal distancemap where the value of each element is the
minimum distance from the corresponding point to the goal. The goal is as specified to
the constructor.

DX.plan(goal) as above but uses the specified goal.

Robotics Toolbox 9.7 for MATLAB
R©

29 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

DX.plan(goal, s) as above but displays the evolution of the distancemap, with one
iteration displayed every s seconds.

Notes

• This may take many seconds.

DXform.plot
Visualize navigation environment

DX.plot() displays the occupancy grid and the goal distance in a new figure. The goal
distance is shown by intensity which increases with distance from the goal. Obstacles
are overlaid and shown in red.

DX.plot(p) as above but also overlays a path given by the set of points p (M × 2).

See also

Navigation.plot

DXform.plot3d
3D costmap view

DX.plot3d() displays the distance function as a 3D surface with distance from goal as
the vertical axis. Obstacles are “cut out” from the surface.

DX.plot3d(p) as above but also overlays a path given by the set of points p (M × 2).

DX.plot3d(p, ls) as above but plot the line with the linestyle ls.

See also

Navigation.plot

Robotics Toolbox 9.7 for MATLAB
R©

30 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

e2h
Euclidean to homogeneous

H = e2h(E) is the homogeneous version (K+1×N) of the Euclidean points E (K×N)
where each column represents one point in RK .

See also

h2e

EKF
Extended Kalman Filter for navigation

This class can be used for:

• dead reckoning localization

• map-based localization

• map making

• simultaneous localization and mapping (SLAM)

It is used in conjunction with:

• a kinematic vehicle model that provides odometry output, represented by a Ve-
hicle object.

• The vehicle must be driven within the area of the map and this is achieved by
connecting the Vehicle object to a Driver object.

• a map containing the position of a number of landmark points and is represented
by a Map object.

• a sensor that returns measurements about landmarks relative to the vehicle’s lo-
cation and is represented by a Sensor object subclass.

The EKF object updates its state at each time step, and invokes the state update methods
of the Vehicle. The complete history of estimated state and covariance is stored within
the EKF object.

Robotics Toolbox 9.7 for MATLAB
R©

31 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

run run the filter
plot xy plot the actual path of the vehicle
plot P plot the estimated covariance norm along the path
plot map plot estimated feature points and confidence limits
plot ellipse plot estimated path with covariance ellipses
display print the filter state in human readable form
char convert the filter state to human readable string

Properties

x est estimated state
P estimated covariance
V est estimated odometry covariance
W est estimated sensor covariance
features maps sensor feature id to filter state element
robot reference to the Vehicle object
sensor reference to the Sensor subclass object
history vector of structs that hold the detailed filter state from each time step
verbose show lots of detail (default false)
joseph use Joseph form to represent covariance (default true)

Vehicle position estimation (localization)

Create a vehicle with odometry covariance V, add a driver to it, create a Kalman filter
with estimated covariance V est and initial state covariance P0

veh = Vehicle(V);
veh.add_driver(RandomPath(20, 2));
ekf = EKF(veh, V_est, P0);

We run the simulation for 1000 time steps

ekf.run(1000);

then plot true vehicle path

veh.plot_xy(’b’);

and overlay the estimated path

ekf.plot_xy(’r’);

and overlay uncertainty ellipses at every 20 time steps

ekf.plot_ellipse(20, ’g’);

We can plot the covariance against time as

clf
ekf.plot_P();

Robotics Toolbox 9.7 for MATLAB
R©

32 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Map-based vehicle localization

Create a vehicle with odometry covariance V, add a driver to it, create a map with 20
point features, create a sensor that uses the map and vehicle state to estimate feature
range and bearing with covariance W, the Kalman filter with estimated covariances
V est and W est and initial vehicle state covariance P0

veh = Vehicle(V);
veh.add_driver(RandomPath(20, 2));
map = Map(20);
sensor = RangeBearingSensor(veh, map, W);
ekf = EKF(veh, V_est, P0, sensor, W_est, map);

We run the simulation for 1000 time steps

ekf.run(1000);

then plot the map and the true vehicle path

map.plot();
veh.plot_xy(’b’);

and overlay the estimatd path

ekf.plot_xy(’r’);

and overlay uncertainty ellipses at every 20 time steps

ekf.plot_ellipse([], ’g’);

We can plot the covariance against time as

clf
ekf.plot_P();

Vehicle-based map making

Create a vehicle with odometry covariance V, add a driver to it, create a sensor that
uses the map and vehicle state to estimate feature range and bearing with covariance
W, the Kalman filter with estimated sensor covariance W est and a “perfect” vehicle
(no covariance), then run the filter for N time steps.

veh = Vehicle(V);
veh.add_driver(RandomPath(20, 2));
sensor = RangeBearingSensor(veh, map, W);
ekf = EKF(veh, [], [], sensor, W_est, []);

We run the simulation for 1000 time steps

ekf.run(1000);

Then plot the true map

map.plot();

and overlay the estimated map with 3 sigma ellipses

ekf.plot_map(3, ’g’);

Robotics Toolbox 9.7 for MATLAB
R©

33 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Simultaneous localization and mapping (SLAM)

Create a vehicle with odometry covariance V, add a driver to it, create a map with 20
point features, create a sensor that uses the map and vehicle state to estimate feature
range and bearing with covariance W, the Kalman filter with estimated covariances
V est and W est and initial state covariance P0, then run the filter to estimate the vehicle
state at each time step and the map.

veh = Vehicle(V);
veh.add_driver(RandomPath(20, 2));
map = Map(20);
sensor = RangeBearingSensor(veh, map, W);
ekf = EKF(veh, V_est, P0, sensor, W, []);

We run the simulation for 1000 time steps

ekf.run(1000);

then plot the map and the true vehicle path

map.plot();
veh.plot_xy(’b’);

and overlay the estimated path

ekf.plot_xy(’r’);

and overlay uncertainty ellipses at every 20 time steps

ekf.plot_ellipse([], ’g’);

We can plot the covariance against time as

clf
ekf.plot_P();

Then plot the true map

map.plot();

and overlay the estimated map with 3 sigma ellipses

ekf.plot_map(3, ’g’);

Reference

Robotics, Vision & Control, Chap 6, Peter Corke, Springer 2011

Acknowledgement

Inspired by code of Paul Newman, Oxford University, http://www.robots.ox.ac.uk/ pnew-
man

See also

Vehicle, RandomPath, RangeBearingSensor, Map, ParticleFilter

Robotics Toolbox 9.7 for MATLAB
R©

34 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

EKF.EKF
EKF object constructor

E = EKF(vehicle, v est, p0, options) is an EKF that estimates the state of the vehicle
with estimated odometry covariance v est (2× 2) and initial covariance (3× 3).

E = EKF(vehicle, v est, p0, sensor, w est, map, options) as above but uses informa-
tion from a vehicle mounted sensor, estimated sensor covariance w est and a map.

Options

‘verbose’ Be verbose.
‘nohistory’ Don’t keep history.
‘joseph’ Use Joseph form for covariance.

Notes

• If map is [] then it will be estimated.

• If v est and p0 are [] the vehicle is assumed error free and the filter will only
estimate the landmark positions (map).

• If v est and p0 are finite the filter will estimate the vehicle pose and the landmark
positions (map).

• EKF subclasses Handle, so it is a reference object.

See also

Vehicle, Sensor, RangeBearingSensor, Map

EKF.char
Convert to string

E.char() is a string representing the state of the EKF object in human-readable form.

See also

EKF.display

Robotics Toolbox 9.7 for MATLAB
R©

35 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

EKF.display
Display status of EKF object

E.display() displays the state of the EKF object in human-readable form.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a EKF object and the command has no trailing semicolon.

See also

EKF.char

EKF.init
Reset the filter

E.init() resets the filter state and clears the history.

EKF.plot ellipse
Plot vehicle covariance as an ellipse

E.plot ellipse() overlay the current plot with the estimated vehicle position covariance
ellipses for 20 points along the path.

E.plot ellipse(i) as above but for i points along the path.

E.plot ellipse(i, ls) as above but pass line style arguments ls to plot ellipse. If i is []
then assume 20.

See also

plot ellipse

Robotics Toolbox 9.7 for MATLAB
R©

36 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

EKF.plot map
Plot landmarks

E.plot map(i) overlay the current plot with the estimated landmark position (a +-
marker) and a covariance ellipses for i points along the path.

E.plot map() as above but i=20.

E.plot map(i, ls) as above but pass line style arguments ls to plot ellipse.

See also

plot ellipse

EKF.plot P
Plot covariance magnitude

E.plot P() plots the estimated covariance magnitude against time step.

E.plot P(ls) as above but the optional line style arguments ls are passed to plot.

m = E.plot P() returns the estimated covariance magnitude at all time steps as a vector.

EKF.plot xy
Plot vehicle position

E.plot xy() overlay the current plot with the estimated vehicle path in the xy-plane.

E.plot xy(ls) as above but the optional line style arguments ls are passed to plot.

p = E.plot xy() returns the estimated vehicle pose trajectory as a matrix (N ×3) where
each row is x, y, theta.

See also

EKF.plot ellipse, EKF.plot P

Robotics Toolbox 9.7 for MATLAB
R©

37 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

EKF.run
Run the filter

E.run(n) runs the filter for n time steps and shows an animation of the vehicle moving.

Notes

• All previously estimated states and estimation history are initially cleared.

eul2jac
Euler angle rate Jacobian

J = eul2jac(eul) is a Jacobian matrix (3 × 3) that maps Euler angle rates to angular
velocity at the operating point eul=[PHI, THETA, PSI].

J = eul2jac(phi, theta, psi) as above but the Euler angles are passed as separate argu-
ments.

Notes

• Used in the creation of an analytical Jacobian.

See also

rpy2jac, SERIALlINK.JACOBN

eul2r
Convert Euler angles to rotation matrix

R = eul2r(phi, theta, psi, options) is an orthonornal rotation matrix equivalent to
the specified Euler angles. These correspond to rotations about the Z, Y, Z axes re-
spectively. If phi, theta, psi are column vectors then they are assumed to represent
a trajectory and R is a three dimensional matrix, where the last index corresponds to
rows of phi, theta, psi.

Robotics Toolbox 9.7 for MATLAB
R©

38 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

R = eul2r(eul, options) as above but the Euler angles are taken from consecutive
columns of the passed matrix eul = [phi theta psi].

Options

‘deg’ Compute angles in degrees (radians default)

Note

• The vectors phi, theta, psi must be of the same length.

See also

eul2tr, rpy2tr, tr2eul

eul2tr
Convert Euler angles to homogeneous transform

T = eul2tr(phi, theta, psi, options) is a homogeneous transformation equivalent to
the specified Euler angles. These correspond to rotations about the Z, Y, Z axes re-
spectively. If phi, theta, psi are column vectors then they are assumed to represent
a trajectory and R is a three dimensional matrix, where the last index corresponds to
rows of phi, theta, psi.

T = eul2tr(eul, options) as above but the Euler angles are taken from consecutive
columns of the passed matrix eul = [phi theta psi].

Options

‘deg’ Compute angles in degrees (radians default)

Note

• The vectors phi, theta, psi must be of the same length.

• The translational part is zero.

Robotics Toolbox 9.7 for MATLAB
R©

39 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

eul2r, rpy2tr, tr2eul

gauss2d
Gaussian kernel

out = gauss2d(im, sigma, C) is a unit volume Gaussian kernel rendered into matrix
out (W ×H) the same size as im (W ×H). The Gaussian has a standard deviation of
sigma. The Gaussian is centered at C=[U,V].

h2e
Homogeneous to Euclidean

E = h2e(H) is the Euclidean version (K-1×N) of the homogeneous points H (K×N)
where each column represents one point in PK .

See also

e2h

homline
Homogeneous line from two points

L = homline(x1, y1, x2, y2) is a vector (3× 1) which describes a line in homogeneous
form that contains the two Euclidean points (x1,y1) and (x2,y2).

Homogeneous points X (3× 1) on the line must satisfy L’*X = 0.

Robotics Toolbox 9.7 for MATLAB
R©

40 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

plot homline

homtrans
Apply a homogeneous transformation

p2 = homtrans(T, p) applies homogeneous transformation T to the points stored
columnwise in p.

• If T is in SE(2) (3× 3) and

– p is 2×N (2D points) they are considered Euclidean (R2)

– p is 3×N (2D points) they are considered projective (p2)

• If T is in SE(3) (4× 4) and

– p is 3×N (3D points) they are considered Euclidean (R3)

– p is 4×N (3D points) they are considered projective (p3)

tp = homtrans(T, T1) applies homogeneous transformation T to the homogeneous
transformation T1, that is tp=T*T1. If T1 is a 3-dimensional transformation then T is
applied to each plane as defined by the first two

dimensions, ie. if T = N ×N and T=N ×N × p then the result is N ×N × p.

See also

e2h, h2e

ishomog
Test if argument is a homogeneous transformation

ishomog(T) is true (1) if the argument T is of dimension 4× 4 or 4× 4×N , else false
(0).

ishomog(T, ‘valid’) as above, but also checks the validity of the rotation matrix.

Robotics Toolbox 9.7 for MATLAB
R©

41 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• The first form is a fast, but incomplete, test for a transform in SE(3)

• Does not work for the SE(2) case

See also

isrot, isvec

isrot
Test if argument is a rotation matrix

isrot(R) is true (1) if the argument is of dimension 3× 3 or 3× 3×N , else false (0).

isrot(R, ‘valid’) as above, but also checks the validity of the rotation matrix.

Notes

• A valid rotation matrix has determinant of 1.

See also

ishomog, isvec

isvec
Test if argument is a vector

isvec(v) is true (1) if the argument v is a 3-vector, else false (0).

isvec(v, L) is true (1) if the argument v is a vector of length L, either a row- or column-
vector. Otherwise false (0).

Robotics Toolbox 9.7 for MATLAB
R©

42 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• differs from MATLAB builtin function ISVECTOR, the latter returns true for the
case of a scalar, isvec does not.

See also

ishomog, isrot

jtraj
Compute a joint space trajectory between two points

[q,qd,qdd] = jtraj(q0, qf, m) is a joint space trajectory q (m × N) where the joint
coordinates vary from q0 (1×N) to qf (1×N). A quintic (5th order) polynomial is used
with default zero boundary conditions for velocity and acceleration. Time is assumed
to vary from 0 to 1 in m steps. Joint velocity and acceleration can be optionally returned
as qd (m×N) and qdd (m×N) respectively. The trajectory q, qd and qdd are m×N
matrices, with one row per time step, and one column per joint.

[q,qd,qdd] = jtraj(q0, qf, m, qd0, qdf) as above but also specifies initial and final
joint velocity for the trajectory.

[q,qd,qdd] = jtraj(q0, qf, T) as above but the trajectory length is defined by the length
of the time vector T (m × 1).

[q,qd,qdd] = jtraj(q0, qf, T, qd0, qdf) as above but specifies initial and final joint
velocity for the trajectory and a time vector.

See also

ctraj, SerialLink.jtraj

Link
Robot manipulator Link class

A Link object holds all information related to a robot link such as kinematics parame-
ters, rigid-body inertial parameters, motor and transmission parameters.

Robotics Toolbox 9.7 for MATLAB
R©

43 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

A link transform matrix
RP joint type: ‘R’ or ‘P’
friction friction force
nofriction Link object with friction parameters set to zero
dyn display link dynamic parameters
islimit test if joint exceeds soft limit
isrevolute test if joint is revolute
isprismatic test if joint is prismatic
display print the link parameters in human readable form
char convert to string

Properties (read/write)

theta kinematic: joint angle
d kinematic: link offset
a kinematic: link length
alpha kinematic: link twist
sigma kinematic: 0 if revolute, 1 if prismatic
mdh kinematic: 0 if standard D&H, else 1
offset kinematic: joint variable offset
qlim kinematic: joint variable limits [min max]

m dynamic: link mass
r dynamic: link COG wrt link coordinate frame 3× 1
I dynamic: link inertia matrix, symmetric 3× 3, about link COG.
B dynamic: link viscous friction (motor referred)
Tc dynamic: link Coulomb friction

G actuator: gear ratio
Jm actuator: motor inertia (motor referred)

Notes

• This is reference class object

• Link objects can be used in vectors and arrays

References

• Robotics, Vision & Control, Chap 7 P. Corke, Springer 2011.

See also

SerialLink, Link.Link

Robotics Toolbox 9.7 for MATLAB
R©

44 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Link.Link
Create robot link object

This is class constructor function which has several call signatures.

L = Link() is a Link object with default parameters.

L = Link(l1) is a Link object that is a deep copy of the link object l1.

L = Link(dh, options) is a link object using the specified kinematic convention and
with parameters:

• dh = [THETA D A ALPHA SIGMA OFFSET] where OFFSET is a constant
displacement between the user joint angle vector and the true kinematic solution.

• dh = [THETA D A ALPHA SIGMA] where SIGMA=0 for a revolute and 1 for
a prismatic joint, OFFSET is zero.

• dh = [THETA D A ALPHA], joint is assumed revolute and OFFSET is zero.

Options

‘standard’ for standard D&H parameters (default).
‘modified’ for modified D&H parameters.

Examples

A standard Denavit-Hartenberg link

L3 = Link([0, 0.15005, 0.0203, -pi/2, 0], ’standard’);

the flag ‘standard’ is not strictly necessary but adds clarity.

For a modified Denavit-Hartenberg link

L3 = Link([0, 0.15005, 0.0203, -pi/2, 0], ’modified’);

Notes

• Link object is a reference object, a subclass of Handle object.

• Link objects can be used in vectors and arrays.

• The parameter D is unused in a revolute joint, it is simply a placeholder in the
vector and the value given is ignored.

• The parameter THETA is unused in a prismatic joint, it is simply a placeholder
in the vector and the value given is ignored.

• The joint offset is a constant added to the joint angle variable before forward
kinematics and subtracted after inverse kinematics. It is useful if you want the
robot to adopt a ‘sensible’ pose for zero joint angle configuration.

Robotics Toolbox 9.7 for MATLAB
R©

45 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

• The link dynamic (inertial and motor) parameters are all set to zero. These must
be set by explicitly assigning the object properties: m, r, I, Jm, B, Tc, G.

Link.A
Link transform matrix

T = L.A(q) is the link homogeneous transformation matrix (4×4) corresponding to the
link variable q which is either the Denavit-Hartenberg parameter THETA (revolute) or
D (prismatic).

Notes

• For a revolute joint the THETA parameter of the link is ignored, and q used
instead.

• For a prismatic joint the D parameter of the link is ignored, and q used instead.

• The link offset parameter is added to q before computation of the transformation
matrix.

Link.char
Convert to string

s = L.char() is a string showing link parameters in a compact single line format. If L
is a vector of Link objects return a string with one line per Link.

See also

Link.display

Link.display
Display parameters

L.display() displays the link parameters in compact single line format. If L is a vector
of Link objects displays one line per element.

Robotics Toolbox 9.7 for MATLAB
R©

46 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a Link object and the command has no trailing semicolon.

See also

Link.char, Link.dyn, SerialLink.showlink

Link.dyn
Show inertial properties of link

L.dyn() displays the inertial properties of the link object in a multi-line format. The
properties shown are mass, centre of mass, inertia, friction, gear ratio and motor prop-
erties.

If L is a vector of Link objects show properties for each link.

See also

SerialLink.dyn

Link.friction
Joint friction force

f = L.friction(qd) is the joint friction force/torque for link velocity qd.

Notes

• friction values are referred to the motor, not the load.

• Viscous friction is scaled up by G2.

• Coulomb friction is scaled up by G.

• The sign of the gear ratio is used to determine the appropriate Coulomb friction
value in the non-symmetric case.

Robotics Toolbox 9.7 for MATLAB
R©

47 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Link.islimit
Test joint limits

L.islimit(q) is true (1) if q is outside the soft limits set for this joint.

Note

• The limits are not currently used by any Toolbox functions.

Link.isprismatic
Test if joint is prismatic

L.isprismatic() is true (1) if joint is prismatic.

See also

Link.isrevolute

Link.isrevolute
Test if joint is revolute

L.isrevolute() is true (1) if joint is revolute.

See also

Link.isprismatic

Link.nofriction
Remove friction

ln = L.nofriction() is a link object with the same parameters as L except nonlinear
(Coulomb) friction parameter is zero.

ln = L.nofriction(’all’) as above except that viscous and Coulomb friction are set to
zero.

Robotics Toolbox 9.7 for MATLAB
R©

48 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

ln = L.nofriction(’coulomb’) as above except that Coulomb friction is set to zero.

ln = L.nofriction(’viscous’) as above except that viscous friction is set to zero.

Notes

• Forward dynamic simulation can be very slow with finite Coulomb friction.

See also

SerialLink.nofriction, SerialLink.fdyn

Link.RP
Joint type

c = L.RP() is a character ‘R’ or ‘P’ depending on whether joint is revolute or prismatic
respectively. If L is a vector of Link objects return a string of characters in joint order.

Link.set.I
Set link inertia

L.I = [Ixx Iyy Izz] set link inertia to a diagonal matrix.

L.I = [Ixx Iyy Izz Ixy Iyz Ixz] set link inertia to a symmetric matrix with specified
inertia and product of intertia elements.

L.I = M set Link inertia matrix to M (3× 3) which must be symmetric.

Link.set.r
Set centre of gravity

L.r = R set the link centre of gravity (COG) to R (3-vector).

Robotics Toolbox 9.7 for MATLAB
R©

49 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Link.set.Tc
Set Coulomb friction

L.Tc = F set Coulomb friction parameters to [F -F], for a symmetric Coulomb friction
model.

L.Tc = [FP FM] set Coulomb friction to [FP FM], for an asymmetric Coulomb friction
model. FP>0 and FM<0.

See also

Link.friction

lspb
Linear segment with parabolic blend

[s,sd,sdd] = lspb(s0, sf, m) is a scalar trajectory (m × 1) that varies smoothly from s0
to sf in m steps using a constant velocity segment and parabolic blends (a trapezoidal
path). Velocity and acceleration can be optionally returned as sd (m × 1) and sdd
(m × 1).

[s,sd,sdd] = lspb(s0, sf, m, v) as above but specifies the velocity of the linear segment
which is normally computed automatically.

[s,sd,sdd] = lspb(s0, sf, T) as above but specifies the trajectory in terms of the length
of the time vector T (m × 1).

[s,sd,sdd] = lspb(s0, sf, T, v) as above but specifies the velocity of the linear segment
which is normally computed automatically and a time vector.

Notes

• If no output arguments are specified s, sd, and sdd are plotted.

• For some values of v no solution is possible and an error is flagged.

See also

tpoly, jtraj

Robotics Toolbox 9.7 for MATLAB
R©

50 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Map
Map of planar point features

A Map object represents a square 2D environment with a number of landmark feature
points.

Methods

plot Plot the feature map
feature Return a specified map feature
display Display map parameters in human readable form
char Convert map parameters to human readable string

Properties

map Matrix of map feature coordinates 2×N
dim The dimensions of the map region x,y in [-dim,dim]
nfeatures The number of map features N

Examples

To create a map for an area where X and Y are in the range -10 to +10 metres and with
50 random feature points

map = Map(50, 10);

which can be displayed by

map.plot();

Reference

Robotics, Vision & Control, Chap 6, Peter Corke, Springer 2011

See also

RangeBearingSensor, EKF

Robotics Toolbox 9.7 for MATLAB
R©

51 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Map.Map
Map of point feature landmarks

m = Map(n, dim, options) is a Map object that represents n random point features in
a planar region bounded by +/-dim in the x- and y-directions.

Options

‘verbose’ Be verbose

Map.char
Convert vehicle parameters and state to a string

s = M.char() is a string showing map parameters in a compact human readable format.

Map.display
Display map parameters

M.display() display map parameters in a compact human readable form.

Notes

• this method is invoked implicitly at the command line when the result of an
expression is a Map object and the command has no trailing semicolon.

See also

map.char

Map.feature
Return the specified map feature

f = M.feature(k) is the coordinate (2× 1) of the k’th feature.

Robotics Toolbox 9.7 for MATLAB
R©

52 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Map.plot
Plot the map

M.plot() plots the feature map in the current figure, as a square region with dimensions
given by the M.dim property. Each feature is marked by a black diamond.

M.plot(ls) plots the feature map as above, but the arguments ls are passed to plot and
override the default marker style.

Notes

• The plot is left with HOLD ON.

Map.show
Show the feature map

Notes

• Deprecated, use plot method.

Map.verbosity
Set verbosity

M.verbosity(v) set verbosity to v, where 0 is silent and greater values display more
information.

mdl Fanuc10L
Create kinematic model of Fanuc AM120iB/10L robot

mdl_fanuc10L

Script creates the workspace variable R which describes the kinematic characteristics
of a Fanuc AM120iB/10L robot using standard DH conventions.

Also defines the workspace vector:

Robotics Toolbox 9.7 for MATLAB
R©

53 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

q0 mastering position.

Author

Wynand Swart, Mega Robots CC, P/O Box 8412, Pretoria, 0001, South Africa wynand.swart@gmail.com

See also

SerialLink, mdl puma560akb, mdl stanford, mdl twolink

mdl MotomanHP6
Create kinematic data of a Motoman HP6 manipulator

mdl_motomanHP6

Script creates the workspace variable R which describes the kinematic characteristics
of a Motoman HP6 manipulator using standard DH conventions.

Also defines the workspace vector:

q0 mastering position.

Author:

Wynand Swart, Mega Robots CC, P/O Box 8412, Pretoria, 0001, South Africa wynand.swart@gmail.com

See also

SerialLink, mdl puma560akb, mdl stanford, mdl twolink

mdl puma560
Create model of Puma 560 manipulator

mdl_puma560

Script creates the workspace variable p560 which describes the kinematic and dynamic
characteristics of a Unimation Puma 560 manipulator using standard DH conventions.
The model includes armature inertia and gear ratios.

Robotics Toolbox 9.7 for MATLAB
R©

54 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Also define the workspace vectors:

qz zero joint angle configuration
qr vertical ‘READY’ configuration
qstretch arm is stretched out in the X direction
qn arm is at a nominal non-singular configuration

Reference

• “A search for consensus among model parameters reported for the PUMA 560
robot”, P. Corke and B. Armstrong-Helouvry, Proc. IEEE Int. Conf. Robotics
and Automation, (San Diego), pp. 1608-1613, May 1994.

See also

SerialLink, mdl puma560akb, mdl stanford, mdl twolink

mdl puma560akb
Create model of Puma 560 manipulator

mdl_puma560akb

Script creates the workspace variable p560m which describes the kinematic and dy-
namic characterstics of a Unimation Puma 560 manipulator modified DH conventions.

Also defines the workspace vectors:

qz zero joint angle configuration
qr vertical ‘READY’ configuration
qstretch arm is stretched out in the X direction

References

• “The Explicit Dynamic Model and Inertial Parameters of the Puma 560 Arm”
Armstrong, Khatib and Burdick 1986

See also

SerialLink, mdl puma560, mdl stanford, mdl twolink

Robotics Toolbox 9.7 for MATLAB
R©

55 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

mdl quadcopter
Dynamic parameters for a quadcopter.

mdl_quadcopter

Script creates the workspace variable quad which describes the dynamic characterstics
of a quadcopter.

Properties

This is a structure with the following elements:

J Flyer rotational inertia matrix (3× 3)
h Height of rotors above CoG (1× 1)
d Length of flyer arms (1× 1)
nb Number of blades per rotor (1× 1)
r Rotor radius (1× 1)
c Blade chord (1× 1)
e Flapping hinge offset (1× 1)
Mb Rotor blade mass (1× 1)
Mc Estimated hub clamp mass (1× 1)
ec Blade root clamp displacement (1× 1)
Ib Rotor blade rotational inertia (1× 1)
Ic Estimated root clamp inertia (1× 1)
mb Static blade moment (1× 1)
Ir Total rotor inertia (1× 1)
Ct Non-dim. thrust coefficient (1× 1)
Cq Non-dim. torque coefficient (1× 1)
sigma Rotor solidity ratio (1× 1)
thetat Blade tip angle (1× 1)
theta0 Blade root angle (1× 1)
theta1 Blade twist angle (1× 1)
theta75 3/4 blade angle (1× 1)
thetai Blade ideal root approximation (1× 1)
a Lift slope gradient (1× 1)
A Rotor disc area (1× 1)
gamma Lock number (1× 1)

References

• Design, Construction and Control of a Large Quadrotor micro air vehicle. P.Pounds,
PhD thesis, Australian National University, 2007. http://www.eng.yale.edu/pep5/P Pounds Thesis 2008.pdf

See also

sl quadcopter

Robotics Toolbox 9.7 for MATLAB
R©

56 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

mdl S4ABB2p8
Create kinematic model of ABB S4 2.8robot

mdl_s4abb2P8

Script creates the workspace variable R which describes the kinematic characteristics
of an ABB S4 2.8 robot using standard DH conventions.

Also defines the workspace vector:

q0 mastering position.

Author

Wynand Swart, Mega Robots CC, P/O Box 8412, Pretoria, 0001, South Africa wynand.swart@gmail.com

See also

SerialLink, mdl puma560akb, mdl stanford, mdl twolink

mdl stanford
Create model of Stanford arm

mdl_stanford

Script creates the workspace variable stanf which describes the kinematic and dynamic
characteristics of the Stanford (Scheinman) arm.

Also defines the vectors:

qz zero joint angle configuration.

Note

• Gear ratios not currently known, though reflected armature inertia is known, so
gear ratios are set to 1.

Robotics Toolbox 9.7 for MATLAB
R©

57 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

References

• Kinematic data from ”Modelling, Trajectory calculation and Servoing of a com-
puter controlled arm”. Stanford AIM-177. Figure 2.3

• Dynamic data from “Robot manipulators: mathematics, programming and con-
trol” Paul 1981, Tables 6.4, 6.6

See also

SerialLink, mdl puma560, mdl puma560akb, mdl twolink

mdl twolink
Create model of a simple 2-link mechanism

mdl_twolink

Script creates the workspace variable tl which describes the kinematic and dynamic
characteristics of a simple planar 2-link mechanism.

Also defines the vector:

qz corresponds to the zero joint angle configuration.

Notes

• It is a planar mechanism operating in the XY (horizontal) plane and is therefore
not affected by gravity.

• Assume unit length links with all mass (unity) concentrated at the joints.

References

• Based on Fig 3-6 (p73) of Spong and Vidyasagar (1st edition).

See also

SerialLink, mdl puma560, mdl stanford

Robotics Toolbox 9.7 for MATLAB
R©

58 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

mstraj
Multi-segment multi-axis trajectory

traj = mstraj(p, qdmax, q0, dt, tacc, options) is a multi-segment trajectory (K ×N)
based on via points p (M × N) and axis velocity limits qdmax (1 × N). The path
comprises linear segments with polynomial blends. The output trajectory matrix has
one row per time step, and one column per axis.

• p (M × N) is a matrix of via points, 1 row per via point, one column per axis.
The last via point is the destination.

• qdmax (1×N) are axis velocity limits which cannot be exceeded, or

• qdmax (M × 1) are the durations for each of the M segments

• q0 (1×N) are the initial axis coordinates

• dt is the time step

• tacc (1× 1) this acceleration time is applied to all segment transitions

• tacc (1×M) acceleration time for each segment, tacc(i) is the acceleration time
for the transition from segment i to segment i+1. tacc(1) is also the acceleration
time at the start of segment 1.

traj = mstraj(segments, qdmax, q0, dt, tacc, qd0, qdf, options) as above but addi-
tionally specifies the initial and final axis velocities (1×N).

Options

‘verbose’ Show details.

Notes

• If no output arguments are specified the trajectory is plotted.

• The path length K is a function of the number of via points, q0, dt and tacc.

• The final via point p(M,:) is the destination.

• The motion has M segments from q0 to p(1,:) to p(2,:) to p(M,:).

• All axes reach their via points at the same time.

• Can be used to create joint space trajectories where each axis is a joint coordi-
nate.

• Can be used to create Cartesian trajectories with the “axes” assigned to transla-
tion and orientation in RPY or Euler angle form.

Robotics Toolbox 9.7 for MATLAB
R©

59 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

mstraj, lspb, ctraj

mtraj
Multi-axis trajectory between two points

[q,qd,qdd] = mtraj(tfunc, q0, qf, m) is a multi-axis trajectory (m ×N) varying from
state q0 (1 × N) to qf (1 × N) according to the scalar trajectory function tfunc in m
steps. Joint velocity and acceleration can be optionally returned as qd (m × N) and
qdd (m ×N) respectively. The trajectory outputs have one row per time step, and one
column per axis.

The shape of the trajectory is given by the scalar trajectory function tfunc
[S,SD,SDD] = TFUNC(S0, SF, M);

and possible values of tfunc include @lspb for a trapezoidal trajectory, or @tpoly for
a polynomial trajectory.

[q,qd,qdd] = mtraj(tfunc, q0, qf, T) as above but specifies the trajectory length in
terms of the length of the time vector T (m × 1).

Notes

• If no output arguments are specified q, qd, and qdd are plotted.

• When tfunc is @tpoly the result is functionally equivalent to JTRAJ except that
no initial velocities can be specified. JTRAJ is computationally a little more
efficient.

See also

jtraj, mstraj, lspb, tpoly

Navigation
Navigation superclass

An abstract superclass for implementing navigation classes.

Robotics Toolbox 9.7 for MATLAB
R©

60 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

plot Display the occupancy grid
visualize Display the occupancy grid (deprecated)
plan Plan a path to goal
path Return/animate a path from start to goal
display Display the parameters in human readable form
char Convert to string

rand Uniformly distributed random number
randn Normally distributed random number
randi Uniformly distributed random integer

Properties (read only)

occgrid Occupancy grid representing the navigation environment
goal Goal coordinate
seed0 Random number state

Methods that must be provided in subclass

plan Generate a plan for motion to goal
next Returns coordinate of next point along path

Methods that may be overriden in a subclass

goal set The goal has been changed by nav.goal = (a,b)
navigate init Start of path planning.

Notes

• Subclasses the MATLAB handle class which means that pass by reference se-
mantics apply.

• A grid world is assumed and vehicle position is quantized to grid cells.

• Vehicle orientation is not considered.

• The initial random number state is captured as seed0 to allow rerunning an ex-
periment with an interesting outcome.

See also

Dstar, dxform, PRM, RRT

Robotics Toolbox 9.7 for MATLAB
R©

61 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Navigation.Navigation
Create a Navigation object

n = Navigation(occgrid, options) is a Navigation object that holds an occupancy grid
occgrid. A number of options can be be passed.

Options

‘navhook’, F Specify a function to be called at every step of path
‘goal’, G Specify the goal point (2× 1)
‘verbose’ Display debugging information
‘inflate’, K Inflate all obstacles by K cells.
‘private’ Use private random number stream.
‘reset’ Reset random number stream.
‘seed’, S Set the initial state of the random number stream. S must be a proper random number

generator state such as saved in the seed0 property of an earlier run.

Notes

• In the occupancy grid a value of zero means free space and non-zero means
occupied (not driveable).

• Obstacle inflation is performed with a round structuring element (kcircle).

• The ‘private’ option creates a private random number stream for the methods
rand, randn and randi. If not given the global stream is used.

Navigation.char
Convert to string

N.char() is a string representing the state of the navigation object in human-readable
form.

Navigation.display
Display status of navigation object

N.display() displays the state of the navigation object in human-readable form.

Robotics Toolbox 9.7 for MATLAB
R©

62 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a Navigation object and the command has no trailing semicolon.

See also

Navigation.char

Navigation.goal change
Notify change of goal

Invoked when the goal property of the object is changed. Typically this is overriden in
a subclass to take particular action such as invalidating a costmap.

Navigation.message
display debug message

N.message(s) displays the string s if the verbose property is true.

N.message(fmt, args) as above but accepts printf() like semantics.

Navigation.navigate init
Notify start of path

Invoked when the path() method is invoked. Typically overriden in a subclass to take
particular action such as computing some path parameters. start is the initial position
for this path, and nav.goal is the final position.

Navigation.path
Follow path from start to goal

N.path(start) animates the robot moving from start (2 × 1) to the goal (which is a
property of the object).

Robotics Toolbox 9.7 for MATLAB
R©

63 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

N.path() as above but first displays the occupancy grid, and prompts the user to click
a start location. the object).

x = N.path(start) returns the path (2×M) from start to the goal (which is a property
of the object).

The method performs the following steps:

• Get start position interactively if not given

• Initialized navigation, invoke method N.navigate init()

• Visualize the environment, invoke method N.plot()

• Iterate on the next() method of the subclass

See also

Navigation.plot, Navigation.goal

Navigation.plot
Visualize navigation environment

N.plot() displays the occupancy grid in a new figure.

N.plot(p) as above but overlays the points along the path (M × 2) matrix.

Options

‘goal’ Superimpose the goal position if set
‘distance’, D Display a distance field D behind the obstacle map. D is a matrix of the same size as

the occupancy grid.

Navigation.rand
Uniformly distributed random number

R = N.rand() return a uniformly distributed random number from a private random
number stream.

R = N.rand(m) as above but return a matrix (m × m) of random numbers.

R = N.rand(L,m) as above but return a matrix (L × m) of random numbers.

Robotics Toolbox 9.7 for MATLAB
R©

64 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Accepts the same arguments as rand().

• Seed is provided to Navigation constructor.

See also

rand, randstream

Navigation.randi
Integer random number

i = N.randi(rm) return a uniformly distributed random integer in the range 1 to rm
from a private random number stream.

i = N.randi(rm, m) as above but return a matrix (m × m) of random integers.

i = N.randn(rm, L,m) as above but return a matrix (L × m) of random integers.

Notes

• Accepts the same arguments as randn().

• Seed is provided to Navigation constructor.

See also

randn, randstream

Navigation.randn
Normally distributed random number

R = N.randn() return a normally distributed random number from a private random
number stream.

R = N.randn(m) as above but return a matrix (m × m) of random numbers.

R = N.randn(L,m) as above but return a matrix (L × m) of random numbers.

Robotics Toolbox 9.7 for MATLAB
R©

65 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Accepts the same arguments as randn().

• Seed is provided to Navigation constructor.

See also

randn, randstream

Navigation.spinner
Update progress spinner

N.spinner() displays a simple ASCII progress spinner, a rotating bar.

Navigation.verbosity
Set verbosity

N.verbosity(v) set verbosity to v, where 0 is silent and greater values display more
information.

numcols
Return number of columns in matrix

nc = numcols(m) is the number of columns in the matrix m.

See also

numrows

Robotics Toolbox 9.7 for MATLAB
R©

66 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

numrows
Return number of rows in matrix

nr = numrows(m) is the number of rows in the matrix m.

See also

numcols

oa2r
Convert orientation and approach vectors to rotation matrix

R = oa2r(o, a) is a rotation matrix for the specified orientation and approach vectors
(3× 1) formed from 3 vectors such that R = [N o a] and N = o x a.

Notes

• The submatrix is guaranteed to be orthonormal so long as o and a are not parallel.

• The vectors o and a are parallel to the Y- and Z-axes of the coordinate frame.

See also

rpy2r, eul2r, oa2tr

oa2tr
Convert orientation and approach vectors to homogeneous
transformation

T = oa2tr(o, a) is a homogeneous tranformation for the specified orientation and ap-
proach vectors (3× 1) formed from 3 vectors such that R = [N o a] and N = o x a.

Robotics Toolbox 9.7 for MATLAB
R©

67 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• The rotation submatrix is guaranteed to be orthonormal so long as o and a are
not parallel.

• The translational part is zero.

• The vectors o and a are parallel to the Y- and Z-axes of the coordinate frame.

See also

rpy2tr, eul2tr, oa2r

ParticleFilter
Particle filter class

Monte-carlo based localisation for estimating vehicle pose based on odometry and ob-
servations of known landmarks.

Methods

run run the particle filter
plot xy display estimated vehicle path
plot pdf display particle distribution

Properties

robot reference to the robot object
sensor reference to the sensor object
history vector of structs that hold the detailed information from each time step
nparticles number of particles used
x particle states; nparticles x 3
weight particle weights; nparticles x 1
x est mean of the particle population
std standard deviation of the particle population
Q covariance of noise added to state at each step
L covariance of likelihood model
dim maximum xy dimension

Robotics Toolbox 9.7 for MATLAB
R©

68 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Example

Create a landmark map

map = Map(20);

and a vehicle with odometry covariance and a driver

W = diag([0.1, 1*pi/180].ˆ2);
veh = Vehicle(W);
veh.add_driver(RandomPath(10));

and create a range bearing sensor

R = diag([0.005, 0.5*pi/180].ˆ2);
sensor = RangeBearingSensor(veh, map, R);

For the particle filter we need to define two covariance matrices. The first is is the
covariance of the random noise added to the particle states at each iteration to represent
uncertainty in configuration.

Q = diag([0.1, 0.1, 1*pi/180]).ˆ2;

and the covariance of the likelihood function applied to innovation

L = diag([0.1 0.1]);

Now construct the particle filter

pf = ParticleFilter(veh, sensor, Q, L, 1000);

which is configured with 1000 particles. The particles are initially uniformly dis-
tributed over the 3-dimensional configuration space.

We run the simulation for 1000 time steps

pf.run(1000);

then plot the map and the true vehicle path

map.plot();
veh.plot_xy(’b’);

and overlay the mean of the particle cloud

pf.plot_xy(’r’);

We can plot the standard deviation against time

plot(pf.std(1:100,:))

The particles are a sampled approximation to the PDF and we can display this as

pf.plot_pdf()

Acknowledgement

Based on code by Paul Newman, Oxford University, http://www.robots.ox.ac.uk/ pnew-
man

Robotics Toolbox 9.7 for MATLAB
R©

69 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Reference

Robotics, Vision & Control, Peter Corke, Springer 2011

See also

Vehicle, RandomPath, RangeBearingSensor, Map, EKF

ParticleFilter.ParticleFilter
Particle filter constructor

pf = ParticleFilter(vehicle, sensor, q, L, np, options) is a particle filter that estimates
the state of the vehicle with a sensor sensor. q is covariance of the noise added to
the particles at each step (diffusion), L is the covariance used in the sensor likelihood
model, and np is the number of particles.

Options

‘verbose’ Be verbose.
‘private’ Use private random number stream.
‘reset’ Reset random number stream.
‘seed’, S Set the initial state of the random number stream. S must be a proper random number

generator state such as saved in the seed0 property of an earlier run.
‘nohistory’ Don’t save history.

Notes

• ParticleFilter subclasses Handle, so it is a reference object.

• The initial particle distribution is uniform over the map, essentially the kid-
napped robot problem which is quite unrealistic.

• The ‘private’ option creates a private random number stream for the methods
rand, randn and randi. If not given the global stream is used.

See also

Vehicle, Sensor, RangeBearingSensor, Map

Robotics Toolbox 9.7 for MATLAB
R©

70 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

ParticleFilter.init
Initialize the particle filter

PF.init() initializes the particle distribution and clears the history.

Notes

• Invoked by the run() method.

ParticleFilter.plot pdf
Plot particles as a PDF

PF.plot pdf() plots a sparse PDF as a series of vertical line segments of height equal to
particle weight.

ParticleFilter.plot xy
Plot vehicle position

PF.plot xy() plots the estimated vehicle path in the xy-plane.

PF.plot xy(ls) as above but the optional line style arguments ls are passed to plot.

ParticleFilter.run
Run the particle filter

PF.run(n) runs the filter for n time steps.

Notes

• All previously estimated states and estimation history is cleared.

Robotics Toolbox 9.7 for MATLAB
R©

71 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

peak
Find peaks in vector

yp = peak(y, options) are the values of the maxima in the vector y.

[yp,i] = peak(y, options) as above but also returns the indices of the maxima in the
vector y.

[yp,xp] = peak(y, x, options) as above but also returns the corresponding x-coordinates
of the maxima in the vector y. x is the same length of y and contains the corresponding
x-coordinates.

Options

‘npeaks’, N Number of peaks to return (default all)
‘scale’, S Only consider as peaks the largest value in the horizontal range +/- S points.
‘interp’, N Order of interpolation polynomial (default no interpolation)
‘plot’ Display the interpolation polynomial overlaid on the point data

Notes

• To find minima, use peak(-V).

• The interp options fits points in the neighbourhood about the peak with an N’th
order polynomial and its peak position is returned. Typically choose N to be
odd.

See also

peak2

peak2
Find peaks in a matrix

zp = peak2(z, options) are the peak values in the 2-dimensional signal z.

[zp,ij] = peak2(z, options) as above but also returns the indices of the maxima in the
matrix z. Use SUB2IND to convert these to row and column coordinates

Robotics Toolbox 9.7 for MATLAB
R©

72 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘npeaks’, N Number of peaks to return (default all)
‘scale’, S Only consider as peaks the largest value in the horizontal and vertical range +/- S

points.
‘interp’ Interpolate peak (default no interpolation)
‘plot’ Display the interpolation polynomial overlaid on the point data

Notes

• To find minima, use peak2(-V).

• The interp options fits points in the neighbourhood about the peak with a paraboloid
and its peak position is returned.

See also

peak, sub2ind

PGraph
Graph class

g = PGraph() create a 2D, planar, undirected graph
g = PGraph(n) create an n-d, undirected graph

Provides support for graphs that:

• are undirected

• are embedded in coordinate system

• have symmetric cost edges (A to B is same cost as B to A)

• have no loops (edges from A to A)

• have vertices are represented by integers vid

• have edges are represented by integers, eid

Robotics Toolbox 9.7 for MATLAB
R©

73 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

Constructing the graph

g.add node(coord) add vertex, return vid
g.add edge(v1, v2) add edge from v1 to v2, return eid
g.setcost(e, c) set cost for edge e
g.setdata(v, u) set user data for vertex v
g.data(v) get user data for vertex v
g.clear() remove all vertices and edges from the graph

Information from graph

g.edges(v) list of edges for vertex v
g.cost(e) cost of edge e
g.neighbours(v) neighbours of vertex v
g.component(v) component id for vertex v
g.connectivity() number of edges for all vertices

Display

g.plot() set goal vertex for path planning
g.highlight node(v) highlight vertex v
g.highlight edge(e) highlight edge e
g.highlight component(c) highlight all nodes in component c
g.highlight path(p) highlight nodes and edge along path p

g.pick(coord) vertex closest to coord

g.char() convert graph to string
g.display() display summary of graph

Matrix representations

g.adjacency() adjacency matrix
g.incidence() incidence matrix
g.degree() degree matrix
g.laplacian() Laplacian matrix

Planning paths through the graph

g.Astar(s, g) shortest path from s to g
g.goal(v) set goal vertex, and plan paths
g.path(v) list of vertices from v to goal

Robotics Toolbox 9.7 for MATLAB
R©

74 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Graph and world points

g.coord(v) coordinate of vertex v
g.distance(v1, v2) distance between v1 and v2
g.distances(coord) return sorted distances from coord to all vertices
g.closest(coord) vertex closest to coord

Object properties (read only)

g.n number of vertices
g.ne number of edges
g.nc number of components

Notes

• Graph connectivity is maintained by a labeling algorithm and this is updated
every time an edge is added.

• Nodes and edges cannot be deleted.

PGraph.PGraph
Graph class constructor

g=PGraph(d, options) is a graph object embedded in d dimensions.

Options

‘distance’, M Use the distance metric M for path planning which is either ‘Euclidean’ (default) or
‘SE2’.

‘verbose’ Specify verbose operation

Note

• Number of dimensions is not limited to 2 or 3.

• The distance metric ‘SE2’ is the sum of the squares of the difference in position
and angle modulo 2pi.

• To use a different distance metric create a subclass of PGraph and override the
method distance metric().

Robotics Toolbox 9.7 for MATLAB
R©

75 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.add edge
Add an edge

E = G.add edge(v1, v2) adds an edge between vertices with id v1 and v2, and returns
the edge id E. The edge cost is the distance between the vertices.

E = G.add edge(v1, v2, C) as above but the edge cost is C. cost C.

Note

• Graph connectivity is maintained by a labeling algorithm and this is updated
every time an edge is added.

See also

PGraph.add node

PGraph.add node
Add a node

v = G.add node(x) adds a node/vertex with coordinate x (D×1) and returns the integer
node id v.

v = G.add node(x, v2) as above but connected by an edge to vertex v2 with cost equal
to the distance between the vertices.

v = G.add node(x, v2, C) as above but the added edge has cost C.

See also

PGraph.add edge, PGraph.data, PGraph.getdata

PGraph.adjacency
Adjacency matrix of graph

a = G.adjacency() is a matrix (N ×N) where element a(i,j) is the cost of moving from
vertex i to vertex j.

Robotics Toolbox 9.7 for MATLAB
R©

76 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Matrix is symmetric.

• Eigenvalues of a are real and are known as the spectrum of the graph.

• The element a(I,J) can be considered the number of walks of one edge from
vertex I to vertex J (either zero or one). The element (I,J) of aN are the number
of walks of length N from vertex I to vertex J.

See also

PGraph.degree, PGraph.incidence, PGraph.laplacian

PGraph.Astar
path finding

path = G.Astar(v1, v2) is the lowest cost path from vertex v1 to vertex v2. path is a
list of vertices starting with v1 and ending v2.

[path,C] = G.Astar(v1, v2) as above but also returns the total cost of traversing path.

Notes

• Uses the efficient A* search algorithm.

References

• Correction to “A Formal Basis for the Heuristic Determination of Minimum Cost
Paths”. Hart, P. E.; Nilsson, N. J.; Raphael, B. SIGART Newsletter 37: 28-29,
1972.

See also

PGraph.goal, PGraph.path

PGraph.char
Convert graph to string

s = G.char() is a compact human readable representation of the state of the graph
including the number of vertices, edges and components.

Robotics Toolbox 9.7 for MATLAB
R©

77 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.clear
Clear the graph

G.clear() removes all vertices, edges and components.

PGraph.closest
Find closest vertex

v = G.closest(x) is the vertex geometrically closest to coordinate x.

[v,d] = G.closest(x) as above but also returns the distance d.

See also

PGraph.distances

PGraph.component
Graph component

C = G.component(v) is the id of the graph component

PGraph.connectivity
Graph connectivity

C = G.connectivity() is a vector (N × 1) with the number of edges per vertex.

The average vertex connectivity is

mean(g.connectivity())

and the minimum vertex connectivity is

min(g.connectivity())

Robotics Toolbox 9.7 for MATLAB
R©

78 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.coord
Coordinate of node

x = G.coord(v) is the coordinate vector (D × 1) of vertex id v.

PGraph.cost
Cost of edge

C = G.cost(E) is the cost of edge id E.

PGraph.data
Get user data for node

u = G.data(v) gets the user data of vertex v which can be of any type such as number,
struct, object or cell array.

See also

PGraph.setdata

PGraph.degree
Degree matrix of graph

d = G.degree() is a diagonal matrix (N × N) where element d(i,i) is the number of
edges connected to vertex id i.

See also

PGraph.adjacency, PGraph.incidence, PGraph.laplacian

Robotics Toolbox 9.7 for MATLAB
R©

79 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.display
Display graph

G.display() displays a compact human readable representation of the state of the graph
including the number of vertices, edges and components.

See also

PGraph.char

PGraph.distance
Distance between vertices

d = G.distance(v1, v2) is the geometric distance between the vertices v1 and v2.

See also

PGraph.distances

PGraph.distances
Distances from point to vertices

d = G.distances(x) is a vector (1×N) of geometric distance from the point x (d × 1)
to every other vertex sorted into increasing order.

[d,w] = G.distances(p) as above but also returns w (1 × N) with the corresponding
vertex id.

See also

PGraph.closest

Robotics Toolbox 9.7 for MATLAB
R©

80 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.edges
Find edges given vertex

E = G.edges(v) return the id of all edges from vertex id v.

PGraph.get.n
Number of vertices

G.n is the number of vertices in the graph.

See also

PGraph.ne

PGraph.get.nc
Number of components

G.nc is the number of components in the graph.

See also

PGraph.component

PGraph.get.ne
Number of edges

G.ne is the number of edges in the graph.

See also

PGraph.n

Robotics Toolbox 9.7 for MATLAB
R©

81 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.goal
Set goal node

G.goal(vg) computes the cost of reaching every vertex in the graph connected to the
goal vertex vg.

Notes

• Combined with G.path performs a breadth-first search for paths to the goal.

See also

PGraph.path, PGraph.Astar

PGraph.highlight component
Highlight a graph component

G.highlight component(C, options) highlights the vertices that belong to graph com-
ponent C.

Options

‘NodeSize’, S Size of vertex circle (default 12)
‘NodeFaceColor’, C Node circle color (default yellow)
‘NodeEdgeColor’, C Node circle edge color (default blue)

See also

PGraph.highlight node, PGraph.highlight edge, PGraph.highlight component

PGraph.highlight edge
Highlight a node

G.highlight edge(v1, v2) highlights the edge between vertices v1 and v2.

G.highlight edge(E) highlights the edge with id E.

Robotics Toolbox 9.7 for MATLAB
R©

82 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘EdgeColor’, C Edge edge color (default black)
‘EdgeThickness’, T Edge thickness (default 1.5)

See also

PGraph.highlight node, PGraph.highlight path, PGraph.highlight component

PGraph.highlight node
Highlight a node

G.highlight node(v, options) highlights the vertex v with a yellow marker. If v is a
list of vertices then all are highlighted.

Options

‘NodeSize’, S Size of vertex circle (default 12)
‘NodeFaceColor’, C Node circle color (default yellow)
‘NodeEdgeColor’, C Node circle edge color (default blue)

See also

PGraph.highlight edge, PGraph.highlight path, PGraph.highlight component

PGraph.highlight path
Highlight path

G.highlight path(p, options) highlights the path defined by vector p which is a list of
vertices comprising the path.

Options

‘NodeSize’, S Size of vertex circle (default 12)
‘NodeFaceColor’, C Node circle color (default yellow)
‘NodeEdgeColor’, C Node circle edge color (default blue)
‘EdgeColor’, C Node circle edge color (default black)

Robotics Toolbox 9.7 for MATLAB
R©

83 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

PGraph.highlight node, PGraph.highlight edge, PGraph.highlight component

PGraph.incidence
Incidence matrix of graph

in = G.incidence() is a matrix (N ×NE) where element in(i,j) is non-zero if vertex id
i is connected to edge id j.

See also

PGraph.adjacency, PGraph.degree, PGraph.laplacian

PGraph.laplacian
Laplacian matrix of graph

L = G.laplacian() is the Laplacian matrix (N ×N) of the graph.

Notes

• L is always positive-semidefinite.

• L has at least one zero eigenvalue.

• The number of zero eigenvalues is the number of connected components in the
graph.

See also

PGraph.adjacency, PGraph.incidence, PGraph.degree

PGraph.merge
the dominant and submissive labels

Robotics Toolbox 9.7 for MATLAB
R©

84 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.neighbours
Neighbours of a vertex

n = G.neighbours(v) is a vector of ids for all vertices which are directly connected
neighbours of vertex v.

[n,C] = G.neighbours(v) as above but also returns a vector C whose elements are the
edge costs of the paths corresponding to the vertex ids in n.

PGraph.path
Find path to goal node

p = G.path(vs) is a vector of vertex ids that form a path from the starting vertex vs to
the previously specified goal. The path includes the start and goal vertex id.

To compute path to goal vertex 5

g.goal(5);

then the path, starting from vertex 1 is

p1 = g.path(1);

and the path starting from vertex 2 is

p2 = g.path(2);

Notes

• Pgraph.goal must have been invoked first.

• Can be used repeatedly to find paths from different starting points to the goal
specified to Pgraph.goal().

See also

PGraph.goal, PGraph.Astar

PGraph.pick
Graphically select a vertex

v = G.pick() is the id of the vertex closest to the point clicked by the user on a plot of
the graph.

Robotics Toolbox 9.7 for MATLAB
R©

85 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

PGraph.plot

PGraph.plot
Plot the graph

G.plot(opt) plots the graph in the current figure. Nodes are shown as colored circles.

Options

‘labels’ Display vertex id (default false)
‘edges’ Display edges (default true)
‘edgelabels’ Display edge id (default false)
‘NodeSize’, S Size of vertex circle (default 8)
‘NodeFaceColor’, C Node circle color (default blue)
‘NodeEdgeColor’, C Node circle edge color (default blue)
‘NodeLabelSize’, S Node label text sizer (default 16)
‘NodeLabelColor’, C Node label text color (default blue)
‘EdgeColor’, C Edge color (default black)
‘EdgeLabelSize’, S Edge label text size (default black)
‘EdgeLabelColor’, C Edge label text color (default black)
‘componentcolor’ Node color is a function of graph component

PGraph.setcost
Set cost of edge

G.setcost(E, C) set cost of edge id E to C.

PGraph.setdata
Set user data for node

G.setdata(v, u) sets the user data of vertex v to u which can be of any type such as
number, struct, object or cell array.

Robotics Toolbox 9.7 for MATLAB
R©

86 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

PGraph.data

PGraph.vertices
Find vertices given edge

v = G.vertices(E) return the id of the vertices that define edge E.

plot2
Plot trajectories

plot2(p) plots a line with coordinates taken from successive rows of p. p can be N × 2
or N × 3.

If p has three dimensions, ie. N × 2 ×M or N × 3 ×M then the M trajectories are
overlaid in the one plot.

plot2(p, ls) as above but the line style arguments ls are passed to plot.

See also

plot

plot arrow
Plot arrow

plot arrow(p, options) draws an arrow from P1 to P2 where p=[P1; P2].

See also

arrow3

Robotics Toolbox 9.7 for MATLAB
R©

87 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

plot box
a box on the current plot

plot box(b, ls) draws a box defined by b=[XL XR; YL YR] with optional Matlab
linestyle options ls.

plot box(x1,y1, x2,y2, ls) draws a box with corners at (x1,y1) and (x2,y2), and optional
Matlab linestyle options ls.

plot box(’centre’, P, ‘size’, W, ls) draws a box with center at P=[X,Y] and with dimen-
sions W=[WIDTH HEIGHT].

plot box(’topleft’, P, ‘size’, W, ls) draws a box with top-left at P=[X,Y] and with di-
mensions W=[WIDTH HEIGHT].

plot circle
Draw a circle on the current plot

plot circle(C, R, options) draws a circle on the current plot with centre C=[X,Y] and
radius R. If C=[X,Y,Z] the circle is drawn in the XY-plane at height Z.

Options

‘edgecolor’ the color of the circle’s edge, Matlab color spec
‘fillcolor’ the color of the circle’s interior, Matlab color spec
‘alpha’ transparency of the filled circle: 0=transparent, 1=solid.

plot ellipse
Draw an ellipse on the current plot

plot ellipse(a, ls) draws an ellipse defined by X’AX = 0 on the current plot, centred at
the origin, with Matlab line style ls.

plot ellipse(a, C, ls) as above but centred at C=[X,Y]. current plot. If C=[X,Y,Z] the
ellipse is parallel to the XY plane but at height Z.

Robotics Toolbox 9.7 for MATLAB
R©

88 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

plot circle

plot homline
Draw a line in homogeneous form

H = plot homline(L, ls) draws a line in the current figure L.X = 0. The current axis
limits are used to determine the endpoints of the line. Matlab line specification ls can
be set.

The return argument is a vector of graphics handles for the lines.

See also

homline

plot point
point features

plot point(p, options) adds point markers to a plot, where p (2×N) and each column
is the point coordinate.

Options

‘textcolor’, colspec Specify color of text
‘textsize’, size Specify size of text
‘bold’ Text in bold font.
‘printf’, fmt, data Label points according to printf format string and corresponding element of data
‘sequence’ Label points sequentially

Additional options are passed through to PLOT for creating the marker.

Examples

Simple point plot

Robotics Toolbox 9.7 for MATLAB
R©

89 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

P = rand(2,4);
plot_point(P);

Plot points with markers

plot_point(P, ’*’);

Plot points with square markers and labels

plot_point(P, ’sequence’, ’s’);

Plot points with circles and annotations

data = [1 2 4 8];
plot_point(P, ’printf’, {’ P%d’, data}, ’o’);

See also

plot, text

plot poly
Plot a polygon

plotpoly(p, options) plot a polygon defined by columns of p which can be 2 × N or
3×N .

options

‘fill’ the color of the circle’s interior, Matlab color spec
‘alpha’ transparency of the filled circle: 0=transparent, 1=solid.

See also

plot, patch, Polygon

plot sphere
Plot spheres

plot sphere(C, R, color) add spheres to the current figure. C is the centre of the sphere
and if its a 3×N matrix then N spheres are drawn with centres as per the columns. R

Robotics Toolbox 9.7 for MATLAB
R©

90 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

is the radius and color is a Matlab color spec, either a letter or 3-vector.

H = plot sphere(C, R, color) as above but returns the handle(s) for the spheres.

H = plot sphere(C, R, color, alpha) as above but alpha specifies the opacity of the
sphere were 0 is transparant and 1 is opaque. The default is 1.

Example

Create four spheres

plot_sphere(mkgrid(2, 1), .2, ’b’)

and now turn on a full lighting model

lighting gouraud
light

NOTES

• The sphere is always added, irrespective of figure hold state.

• The number of vertices to draw the sphere is hardwired.

plot vehicle
Plot ground vehicle pose

plot vehicle(x,options) draw representation of ground robot as an oriented triangle
with pose x (1× 3) [x,y,theta] or x (3× 3) as homogeneous transform in SE(2).

Options

‘scale’, S Draw vehicle with length S x maximum axis dimension
‘size’, S Draw vehicle with length S

See also

Vehicle.plot

Robotics Toolbox 9.7 for MATLAB
R©

91 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

plotbotopt
Define default options for robot plotting

A user provided function that returns a cell array of default plot options for the Seri-
alLink.plot method.

See also

SerialLink.plot

plotp
Plot trajectories

plotp(p) plots a set of points p, which by Toolbox convention are stored one per col-
umn. p can be N × 2 or N × 3. By default a linestyle of ‘bx’ is used.

plotp(p, ls) as above but the line style arguments ls are passed to plot.

See also

plot, plot2

polydiff
pd = polydiff(p)

Return the coefficients of the derivative of polynomial p

Robotics Toolbox 9.7 for MATLAB
R©

92 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Polygon
Polygon class

A general class for manipulating polygons and vectors of polygons.

Methods

plot Plot polygon
area Area of polygon
moments Moments of polygon
centroid Centroid of polygon
perimeter Perimter of polygon
transform Transform polygon
inside Test if points are inside polygon
intersection Intersection of two polygons
difference Difference of two polygons
union Union of two polygons
xor Exclusive or of two polygons
display print the polygon in human readable form
char convert the polgyon to human readable string

Properties

vertices List of polygon vertices, one per column
extent Bounding box [minx maxx; miny maxy]
n Number of vertices

Notes

• This is reference class object

• Polygon objects can be used in vectors and arrays

Acknowledgement

The methods inside, intersection, difference, union, and xor are based on code written
by:

Kirill K. Pankratov, kirill@plume.mit.edu, http://puddle.mit.edu/ glenn/kirill/saga.html

and require a licence. However the author does not respond to email regarding the
licence, so use with care, and modify with acknowledgement.

Robotics Toolbox 9.7 for MATLAB
R©

93 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Polygon.Polygon
Polygon class constructor

p = Polygon(v) is a polygon with vertices given by v, one column per vertex.

p = Polygon(C, wh) is a rectangle centred at C with dimensions wh=[WIDTH, HEIGHT].

Polygon.area
Area of polygon

a = P.area() is the area of the polygon.

Polygon.centroid
Centroid of polygon

x = P.centroid() is the centroid of the polygon.

Polygon.char
String representation

s = P.char() is a compact representation of the polgyon in human readable form.

Polygon.difference
Difference of polygons

d = P.difference(q) is polygon P minus polygon q.

Notes

• If polygons P and q are not intersecting, returns coordinates of P.

• If the result d is not simply connected or consists of several polygons, resulting
vertex list will contain NaNs.

Robotics Toolbox 9.7 for MATLAB
R©

94 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Polygon.display
Display polygon

P.display() displays the polygon in a compact human readable form.

See also

Polygon.char

Polygon.inside
Test if points are inside polygon

in = p.inside(p) tests if points given by columns of p are inside the polygon. The
corresponding elements of in are either true or false.

Polygon.intersect
Intersection of polygon with list of polygons

i = P.intersect(plist) indicates whether or not the Polygon P intersects with

i(j) = 1 if p intersects polylist(j), else 0.

Polygon.intersect line
Intersection of polygon and line segment

i = P.intersect line(L) is the intersection points of a polygon P with the line segment
L=[x1 x2; y1 y2]. i is an N × 2 matrix with one column per intersection, each column
is [x y]’.

Polygon.intersection
Intersection of polygons

i = P.intersection(q) is a Polygon representing the intersection of polygons P and q.

Robotics Toolbox 9.7 for MATLAB
R©

95 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• If these polygons are not intersecting, returns empty polygon.

• If intersection consist of several disjoint polygons (for non-convex P or q) then
vertices of i is the concatenation of the vertices of these polygons.

Polygon.moments
Moments of polygon

a = P.moments(p, q) is the pq’th moment of the polygon.

See also

mpq poly

Polygon.perimeter
Perimeter of polygon

L = P.perimeter() is the perimeter of the polygon.

Polygon.plot
Plot polygon

P.plot() plot the polygon.

P.plot(ls) as above but pass the arguments ls to plot.

Polygon.transform
Transformation of polygon vertices

p2 = P.transform(T) is a new Polygon object whose vertices have been transfored by
the 3× 3 homgoeneous transformation T.

Robotics Toolbox 9.7 for MATLAB
R©

96 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Polygon.union
Union of polygons

i = P.union(q) is a Polygon representing the union of polygons P and q.

Notes

• If these polygons are not intersecting, returns a polygon with vertices of both
polygons separated by NaNs.

• If the result P is not simply connected (such as a polygon with a “hole”) the re-
sulting contour consist of counter- clockwise “outer boundary” and one or more
clock-wise “inner boundaries” around “holes”.

Polygon.xor
Exclusive or of polygons

i = P.union(q) is a Polygon representing the union of polygons P and q.

Notes

• If these polygons are not intersecting, returns a polygon with vertices of both
polygons separated by NaNs.

• If the result P is not simply connected (such as a polygon with a “hole”) the re-
sulting contour consist of counter- clockwise “outer boundary” and one or more
clock-wise “inner boundaries” around “holes”.

PRM
Probabilistic RoadMap navigation class

A concrete subclass of the Navigation class that implements the probabilistic roadmap
navigation algorithm. This performs goal independent planning of roadmaps, and at
the query stage finds paths between specific start and goal points.

Robotics Toolbox 9.7 for MATLAB
R©

97 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

plan Compute the roadmap
path Compute a path to the goal
visualize Display the obstacle map (deprecated)
plot Display the obstacle map
display Display the parameters in human readable form
char Convert to string

Example

load map1 % load map
goal = [50,30]; % goal point
start = [20, 10]; % start point
prm = PRM(map); % create navigation object
prm.plan() % create roadmaps
prm.path(start, goal) % animate path from this start location

References

• Probabilistic roadmaps for path planning in high dimensional configuration spaces,
L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, IEEE Transactions on
Robotics and Automation, vol. 12, pp. 566-580, Aug 1996.

• Robotics, Vision & Control, Section 5.2.4, P. Corke, Springer 2011.

See also

Navigation, DXform, Dstar, PGraph

PRM.PRM
Create a PRM navigation object

p = PRM(map, options) is a probabilistic roadmap navigation object, and map is an
occupancy grid, a representation of a planar world as a matrix whose elements are 0
(free space) or 1 (occupied).

Options

‘npoints’, N Number of sample points (default 100)
‘distthresh’, D Distance threshold, edges only connect vertices closer than D (default 0.3

max(size(occgrid)))

Other options are supported by the Navigation superclass.

Robotics Toolbox 9.7 for MATLAB
R©

98 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Navigation.Navigation

PRM.char
Convert to string

P.char() is a string representing the state of the PRM object in human-readable form.

See also

PRM.display

PRM.path
Find a path between two points

P.path(start, goal) finds and displays a path from start to goal which is overlaid on
the occupancy grid.

x = P.path(start) returns the path (2×M) from start to goal.

PRM.plan
Create a probabilistic roadmap

P.plan() creates the probabilistic roadmap by randomly sampling the free space in the
map and building a graph with edges connecting close points. The resulting graph is
kept within the object.

PRM.plot
Visualize navigation environment

P.plot() displays the occupancy grid with an optional distance field.

Robotics Toolbox 9.7 for MATLAB
R©

99 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘goal’ Superimpose the goal position if set
‘nooverlay’ Don’t overlay the PRM graph

qplot
plot joint angles

qplot(q) is a convenience function to plot joint angle trajectories (M × 6) for a 6-axis
robot, where each row represents one time step.

The first three joints are shown as solid lines, the last three joints (wrist) are shown as
dashed lines. A legend is also displayed.

qplot(T, q) as above but displays the joint angle trajectory versus time T (M × 1).

See also

jtraj, plot

Quaternion
Quaternion class

A quaternion is a compact method of representing a 3D rotation that has computational
advantages including speed and numerical robustness. A quaternion has 2 parts, a
scalar s, and a vector v and is typically written: q = s <vx, vy, vz>.

A unit-quaternion is one for which s2+vx2+vy2+vz2 = 1. It can be considered as a
rotation by an angle theta about a unit-vector V in space where

q = cos (theta/2) < v sin(theta/2)>

q = quaternion(x) is a unit-quaternion equivalent to x which can be any of:

• orthonormal rotation matrix.

• homogeneous transformation matrix (rotation part only).

• rotation angle and vector

Robotics Toolbox 9.7 for MATLAB
R©

100 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

inv inverse of quaterion
norm norm of quaternion
unit unitized quaternion
plot same options as trplot()
interp interpolation (slerp) between q and q2, 0<=s<=1
scale interpolation (slerp) between identity and q, 0<=s<=1
dot derivative of quaternion with angular velocity w
R equivalent 3× 3 rotation matrix
T equivalent 4× 4 homogeneous transform matrix

Arithmetic operators are overloaded

q1==q2 test for quaternion equality
q1 =q2 test for quaternion inequality
q+q2 elementwise sum of quaternions
q-q2 elementwise difference of quaternions
q*q2 quaternion product
q*v rotate vector by quaternion, v is 3× 1
s*q elementwise multiplication of quaternion by scalar
q/q2 q*q2.inv
qn q to power n (integer only)

Properties (read only)

s real part
v vector part

Notes

• quaternion objects can be used in vectors and arrays

References

• Animating rotation with quaternion curves, K. Shoemake, in Proceedings of
ACM SIGGRAPH, (San Fran cisco), pp. 245-254, 1985.

• On homogeneous transforms, quaternions, and computational efficiency, J. Funda,
R. Taylor, and R. Paul, IEEE Transactions on Robotics and Automation, vol. 6,
pp. 382-388, June 1990.

• Robotics, Vision & Control, P. Corke, Springer 2011.

Robotics Toolbox 9.7 for MATLAB
R©

101 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

trinterp, trplot

Quaternion.Quaternion
Constructor for quaternion objects

Construct a quaternion from various other orientation representations.

q = Quaternion() is the identitity quaternion 1<0,0,0> representing a null rotation.

q = Quaternion(q1) is a copy of the quaternion q1

q = Quaternion([S V1 V2 V3]) is a quaternion formed by specifying directly its 4
elements

q = Quaternion(s) is a quaternion formed from the scalar s and zero vector part:
s<0,0,0>

q = Quaternion(v) is a pure quaternion with the specified vector part: 0<v>

q = Quaternion(th, v) is a unit-quaternion corresponding to rotation of th about the
vector v.

q = Quaternion(R) is a unit-quaternion corresponding to the orthonormal rotation ma-
trix R. If R (3 × 3 × N) is a sequence then q (N × 1) is a vector of Quaternions
corresponding to the elements of R.

q = Quaternion(T) is a unit-quaternion equivalent to the rotational part of the homo-
geneous transform T. If T (4 × 4 × N) is a sequence then q (N × 1) is a vector of
Quaternions corresponding to the elements of T.

Quaternion.char
Convert to string

s = Q.char() is a compact string representation of the quaternion’s value as a 4-tuple.
If Q is a vector then s has one line per element.

Quaternion.display
Display the value of a quaternion object

Q.display() displays a compact string representation of the quaternion’s value as a 4-
tuple. If Q is a vector then S has one line per element.

Robotics Toolbox 9.7 for MATLAB
R©

102 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a Quaternion object and the command has no trailing semicolon.

See also

Quaternion.char

Quaternion.double
Convert a quaternion to a 4-element vector

v = Q.double() is a 4-vector comprising the quaternion elements [s vx vy vz].

Quaternion.eq
Test quaternion equality

Q1==Q2 is true if the quaternions Q1 and Q2 are equal.

Notes

• Overloaded operator ‘==’.

• Note that for unit Quaternions Q and -Q are the equivalent rotation, so non-
equality does not mean rotations are not equivalent.

• If Q1 is a vector of quaternions, each element is compared to Q2 and the result
is a logical array of the same length as Q1.

• If Q2 is a vector of quaternions, each element is compared to Q1 and the result
is a logical array of the same length as Q2.

• If Q1 and Q2 are vectors of the same length, then the result is a logical array

See also

Quaternion.ne

Robotics Toolbox 9.7 for MATLAB
R©

103 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Quaternion.interp
Interpolate quaternions

qi = Q1.interp(q2, s) is a unit-quaternion that interpolates a rotation between Q1 for
s=0 and q2 for s=1.

If s is a vector qi is a vector of quaternions, each element corresponding to sequential
elements of s.

Notes

• This is a spherical linear interpolation (slerp) that can be interpretted as interpo-
lation along a great circle arc on a sphere.

• The value of s is clipped to the interval 0 to 1.

See also

ctraj, Quaternion.scale

Quaternion.inv
Invert a unit-quaternion

qi = Q.inv() is a quaternion object representing the inverse of Q.

Quaternion.minus
Subtract quaternions

Q1-Q2 is the element-wise difference of quaternion elements.

Notes

• Overloaded operator ‘-’

• The result is not guaranteed to be a unit-quaternion.

Robotics Toolbox 9.7 for MATLAB
R©

104 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Quaternion.plus, Quaternion.mtimes

Quaternion.mpower
Raise quaternion to integer power

QN is the quaternion Q raised to the integer power N.

Notes

• Overloaded operator ‘ˆ’

• Computed by repeated multiplication.

See also

Quaternion.mrdivide, Quaternion.mpower, Quaternion.plus, Quaternion.minus

Quaternion.mrdivide
Quaternion quotient.

Q1/Q2 is a quaternion formed by Hamilton product of Q1 and inv(Q2).
Q/S is the element-wise division of quaternion elements by the scalar S.

Notes

• Overloaded operator ‘/’

See also

Quaternion.mtimes, Quaternion.mpower, Quaternion.plus, Quaternion.minus

Robotics Toolbox 9.7 for MATLAB
R©

105 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Quaternion.mtimes
Multiply a quaternion object

Q1*Q2 is a quaternion formed by the Hamilton product of two quaternions.
Q*V is a vector formed by rotating the vector V by the quaternion Q.
Q*S is the element-wise multiplication of quaternion elements by the scalar S.

Notes

• Overloaded operator ‘*’

See also

Quaternion.mrdivide, Quaternion.mpower, Quaternion.plus, Quaternion.minus

Quaternion.ne
Test quaternion inequality

Q1 =Q2 is true if the quaternions Q1 and Q2 are not equal.

Notes

• Overloaded operator ‘ =’

• Note that for unit Quaternions Q and -Q are the equivalent rotation, so non-
equality does not mean rotations are not equivalent.

• If Q1 is a vector of quaternions, each element is compared to Q2 and the result
is a logical array of the same length as Q1.

• If Q2 is a vector of quaternions, each element is compared to Q1 and the result
is a logical array of the same length as Q2.

• If Q1 and Q2 are vectors of the same length, then the result is a logical array.

See also

Quaternion.eq

Robotics Toolbox 9.7 for MATLAB
R©

106 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Quaternion.norm
Quaternion magnitude

qn = q.norm(q) is the scalar norm or magnitude of the quaternion q.

Notes

• This is the Euclidean norm of the quaternion written as a 4-vector.

• A unit-quaternion has a norm of one.

See also

Quaternion.unit

Quaternion.plot
Plot a quaternion object

Q.plot(options) plots the quaternion as a rotated coordinate frame.

Options

Options are passed to trplot and include:

‘color’, C The color to draw the axes, MATLAB colorspec C
‘frame’, F The frame is named F and the subscript on the axis labels is F.
‘view’, V Set plot view parameters V=[az el] angles, or ‘auto’ for view toward origin of coordi-

nate frame

See also

trplot

Quaternion.plus
Add quaternions

Q1+Q2 is the element-wise sum of quaternion elements.

Robotics Toolbox 9.7 for MATLAB
R©

107 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Overloaded operator ‘+’

• The result is not guaranteed to be a unit-quaternion.

See also

Quaternion.minus, Quaternion.mtimes

Quaternion.R
Convert toorthonormal rotation matrix

R = Q.R() is the equivalent 3× 3 orthonormal rotation matrix.

Notes:

• For a quaternion sequence returns a rotation matrix sequence.

Quaternion.scale
Interpolate rotations expressed by quaternion objects

qi = Q.scale(s) is a unit-quaternion that interpolates between identity for s=0 to Q for
s=1. This is a spherical linear interpolation (slerp) that can be interpretted as interpola-
tion along a great circle arc on a sphere.

If s is a vector qi is a cell array of quaternions, each element corresponding to sequential
elements of s.

Notes

• This is a spherical linear interpolation (slerp) that can be interpretted as interpo-
lation along a great circle arc on a sphere.

See also

ctraj, Quaternion.interp

Robotics Toolbox 9.7 for MATLAB
R©

108 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Quaternion.T
Convert to homogeneous transformation matrix

T = Q.T() is the equivalent 4× 4 homogeneous transformation matrix.

Notes:

• For a quaternion sequence returns a homogeneous transform matrix sequence

• Has a zero translational component.

Quaternion.unit
Unitize a quaternion

qu = Q.unit() is a unit-quaternion representing the same orientation as Q.

See also

Quaternion.norm

r2t
Convert rotation matrix to a homogeneous transform

T = r2t(R) is a homogeneous transform equivalent to an orthonormal rotation matrix
R with a zero translational component.

Notes

• Works for T in either SE(2) or SE(3)

– if R is 2× 2 then T is 3× 3, or

– if R is 3× 3 then T is 4× 4.

• Translational component is zero.

• For a rotation matrix sequence returns a homogeneous transform sequence.

Robotics Toolbox 9.7 for MATLAB
R©

109 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

t2r

randinit
Reset random number generator

RANDINIT reset the defaul random number stream.

See also

randstream

RandomPath
Vehicle driver class

Create a “driver” object capable of driving a Vehicle object through random waypoints
within a rectangular region and at constant speed.

The driver object is attached to a Vehicle object by the latter’s add driver() method.

Methods

init reset the random number generator
demand return speed and steer angle to next waypoint
display display the state and parameters in human readable form
char convert to string

Properties

goal current goal coordinate
veh the Vehicle object being controlled
dim dimensions of the work space (2× 1) [m]
speed speed of travel [m/s]
closeenough proximity to waypoint at which next is chosen [m]

Robotics Toolbox 9.7 for MATLAB
R©

110 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Example

veh = Vehicle(V);
veh.add_driver(RandomPath(20, 2));

Notes

• It is possible in some cases for the vehicle to move outside the desired region, for
instance if moving to a waypoint near the edge, the limited turning circle may
cause the vehicle to temporarily move outside.

• The vehicle chooses a new waypoint when it is closer than property closeenough
to the current waypoint.

• Uses its own random number stream so as to not influence the performance of
other randomized algorithms such as path planning.

Reference

Robotics, Vision & Control, Chap 6, Peter Corke, Springer 2011

See also

Vehicle

RandomPath.RandomPath
Create a driver object

d = RandomPath(dim, options) returns a “driver” object capable of driving a Vehicle
object through random waypoints. The waypoints are positioned inside a rectangular
region bounded by +/- dim in the x- and y-directions.

Options

‘speed’, S Speed along path (default 1m/s).
‘dthresh’, d Distance from goal at which next goal is chosen.

See also

Vehicle

Robotics Toolbox 9.7 for MATLAB
R©

111 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

RandomPath.char
Convert to string

s = R.char() is a string showing driver parameters and state in in a compact human
readable format.

RandomPath.demand
Compute speed and heading to waypoint

[speed,steer] = R.demand() returns the speed and steer angle to drive the vehicle to-
ward the next waypoint. When the vehicle is within R.closeenough a new waypoint is
chosen.

See also

Vehicle

RandomPath.display
Display driver parameters and state

R.display() displays driver parameters and state in compact human readable form.

See also

RandomPath.char

RandomPath.init
Reset random number generator

R.init() resets the random number generator used to create the waypoints. This enables
the sequence of random waypoints to be repeated.

Robotics Toolbox 9.7 for MATLAB
R©

112 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

randstream

RangeBearingSensor
Range and bearing sensor class

A concrete subclass of the Sensor class that implements a range and bearing angle
sensor that provides robot-centric measurements of point features in the world. To
enable this it has references to a map of the world (Map object) and a robot moving
through the world (Vehicle object).

Methods

reading range/bearing observation of random feature
h range/bearing observation of specific feature
Hx Jacobian matrix dh/dxv
Hxf Jacobian matrix dh/dxf
Hw Jacobian matrix dh/dw

g feature positin given vehicle pose and observation
Gx Jacobian matrix dg/dxv
Gz Jacobian matrix dg/dz

Properties (read/write)

R measurement covariance matrix (2× 2)
interval valid measurements returned every interval’th call to reading()

Reference

Robotics, Vision & Control, Chap 6, Peter Corke, Springer 2011

See also

Sensor, Vehicle, Map, EKF

Robotics Toolbox 9.7 for MATLAB
R©

113 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

RangeBearingSensor.RangeBearingSensor
Range and bearing sensor constructor

s = RangeBearingSensor(vehicle, map, R, options) is an object representing a range
and bearing angle sensor mounted on the Vehicle object vehicle and observing an envi-
ronment of known landmarks represented by the map object map. The sensor covari-
ance is R (2× 2) representing range and bearing covariance.

Options

‘range’, xmax maximum range of sensor
‘range’, [xmin xmax] minimum and maximum range of sensor
‘angle’, TH detection for angles betwen -TH to +TH
‘angle’, [THMIN THMAX] detection for angles betwen THMIN and THMAX
‘skip’, I return a valid reading on every I’th call
‘fail’, [TMIN TMAX] sensor simulates failure between timesteps TMIN and TMAX

See also

Sensor, Vehicle, Map, EKF

RangeBearingSensor.g
Compute landmark location

p = S.g(xv, z) is the world coordinate (1× 2) of a feature given the sensor observation
z (1× 2) and vehicle state xv (3× 1).

See also

RangeBearingSensor.Gx, RangeBearingSensor.Gz

RangeBearingSensor.Gx
Jacobian dg/dx

J = S.Gx(xv, z) is the Jacobian dg/dxv (2× 3) at the vehicle state xv (3× 1) for sensor
observation z (2× 1).

Robotics Toolbox 9.7 for MATLAB
R©

114 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

RangeBearingSensor.g

RangeBearingSensor.Gz
Jacobian dg/dz

J = S.Gz(xv, z) is the Jacobian dg/dz (2 × 2) at the vehicle state xv (3 × 1) for sensor
observation z (2× 1).

See also

RangeBearingSensor.g

RangeBearingSensor.h
Landmark range and bearing

z = S.h(xv, J) is a sensor observation (1× 2), range and bearing, from vehicle at pose
xv (1× 3) to the map feature K.

z = S.h(xv, xf) as above but compute range and bearing to a feature at coordinate xf.

Notes

• Supports vectorized operation where xv (N × 3) and z (N × 2).

See also

RangeBearingSensor.Hx, RangeBearingSensor.Hw, RangeBearingSensor.Hxf

RangeBearingSensor.Hw
Jacobian dh/dv

J = S.Hw(xv, k) is the Jacobian dh/dv (2 × 2) at the vehicle state xv (3 × 1) for map
feature k.

Robotics Toolbox 9.7 for MATLAB
R©

115 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

RangeBearingSensor.h

RangeBearingSensor.Hx
Jacobian dh/dxv

J = S.Hx(xv, k) returns the Jacobian dh/dxv (2× 3) at the vehicle state xv (3× 1) for
map feature k.

J = S.Hx(xv, xf) as above but for a feature at coordinate xf.

See also

RangeBearingSensor.h

RangeBearingSensor.Hxf
Jacobian dh/dxf

J = S.Hxf(xv, k) is the Jacobian dh/dxv (2× 2) at the vehicle state xv (3× 1) for map
feature k.

J = S.Hxf(xv, xf) as above but for a feature at coordinate xf (1× 2).

See also

RangeBearingSensor.h

RangeBearingSensor.reading
Landmark range and bearing

[z,k] = S.reading() is an observation of a random landmark where z=[R,THETA] is
the range and bearing with additive Gaussian noise of covariance R (specified to the
constructor). k is the index of the map feature that was observed. If no valid measure-
ment, ie. no features within range, interval subsampling enabled or simulated failure
the return is z=[] and k=NaN.

Robotics Toolbox 9.7 for MATLAB
R©

116 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

RangeBearingSensor.h

rotx
Rotation about X axis

R = rotx(theta) is a rotation matrix representing a rotation of theta radians about the
x-axis.

R = rotx(theta, ‘deg’) as above but theta is in degrees.

See also

roty, rotz, angvec2r

roty
Rotation about Y axis

R = roty(theta) is a rotation matrix representing a rotation of theta radians about the
y-axis.

R = roty(theta, ‘deg’) as above but theta is in degrees.

See also

rotx, rotz, angvec2r

Robotics Toolbox 9.7 for MATLAB
R©

117 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

rotz
Rotation about Z axis

R = rotz(theta) is a rotation matrix representing a rotation of theta radians about the
z-axis.

R = rotz(theta, ‘deg’) as above but theta is in degrees.

See also

rotx, roty, angvec2r

rpy2jac
Jacobian from RPY angle rates to angular velocity

J = rpy2jac(eul) is a Jacobian matrix (3 × 3) that maps roll-pitch-yaw angle rates to
angular velocity at the operating point RPY=[R,P,Y].

J = rpy2jac(R, p, y) as above but the roll-pitch-yaw angles are passed as separate
arguments.

Notes

• Used in the creation of an analytical Jacobian.

See also

eul2jac, SerialLink.JACOBN

rpy2r
Roll-pitch-yaw angles to rotation matrix

R = rpy2r(rpy, options) is an orthonormal rotation matrix equivalent to the specified
roll, pitch, yaw angles which correspond to rotations about the X, Y, Z axes respec-

Robotics Toolbox 9.7 for MATLAB
R©

118 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

tively. If rpy has multiple rows they are assumed to represent a trajectory and R is a
three dimensional matrix, where the last index corresponds to the rows of rpy.

R = rpy2r(roll, pitch, yaw, options) as above but the roll-pitch-yaw angles are passed
as separate arguments. If roll, pitch and yaw are column vectors they are assumed
to represent a trajectory and R is a three dimensional matrix, where the last index
corresponds to the rows of roll, pitch, yaw.

Options

‘deg’ Compute angles in degrees (radians default)
‘zyx’ Return solution for sequential rotations about Z, Y, X axes (Paul book)

Note

• In previous releases (<8) the angles corresponded to rotations about ZYX. Many
texts (Paul, Spong) use the rotation order ZYX. This old behaviour can be en-
abled by passing the option ‘zyx’

See also

tr2rpy, eul2tr

rpy2tr
Roll-pitch-yaw angles to homogeneous transform

T = rpy2tr(rpy, options) is a homogeneous transformation equivalent to the specified
roll, pitch, yaw angles which correspond to rotations about the X, Y, Z axes respec-
tively. If rpy has multiple rows they are assumed to represent a trajectory and T is a
three dimensional matrix, where the last index corresponds to the rows of rpy.

T = rpy2tr(roll, pitch, yaw, options) as above but the roll-pitch-yaw angles are passed
as separate arguments. If roll, pitch and yaw are column vectors they are assumed
to represent a trajectory and T is a three dimensional matrix, where the last index
corresponds to the rows of roll, pitch, yaw.

Options

‘deg’ Compute angles in degrees (radians default)
‘zyx’ Return solution for sequential rotations about Z, Y, X axes (Paul book)

Robotics Toolbox 9.7 for MATLAB
R©

119 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Note

• In previous releases (<8) the angles corresponded to rotations about ZYX. Many
texts (Paul, Spong) use the rotation order ZYX. This old behaviour can be en-
abled by passing the option ‘zyx’

See also

tr2rpy, rpy2r, eul2tr

RRT
Class for rapidly-exploring random tree navigation

A concrete subclass of the Navigation class that implements the rapidly exploring ran-
dom tree (RRT) algorithm. This is a kinodynamic planner that takes into account the
motion constraints of the vehicle.

Methods

plan Compute the tree
path Compute a path
plot Display the tree
display Display the parameters in human readable form
char Convert to string

Example

goal = [0,0];
start = [0,2,0];
veh = Vehicle([], ’stlim’, 1.2);
rrt = RRT([], veh, ’goal’, goal, ’range’, 5);
rrt.plan() % create navigation tree
rrt.path(start, goal) % animate path from this start location

Robotics, Vision & Control compatability mode:

goal = [0,0];
start = [0,2,0];
rrt = RRT(); % create navigation object
rrt.plan() % create navigation tree
rrt.path(start, goal) % animate path from this start location

Robotics Toolbox 9.7 for MATLAB
R©

120 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

References

• Randomized kinodynamic planning, S. LaValle and J. Kuffner, International
Journal of Robotics Research vol. 20, pp. 378-400, May 2001.

• Probabilistic roadmaps for path planning in high dimensional configuration spaces,
L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, IEEE Transactions on
Robotics and Automation, vol. 12, pp. 566-580, Aug 1996.

• Robotics, Vision & Control, Section 5.2.5, P. Corke, Springer 2011.

See also

Navigation, PRM, DXform, Dstar, PGraph

RRT.RRT
Create a RRT navigation object

R = RRT.RRT(map, veh, options) is a rapidly exploring tree navigation object for a
region with obstacles defined by the map object map.

R = RRT.RRT() as above but internally creates a Vehicle class object and does not
support any map or options. For compatibility with RVC book.

Options

‘npoints’, N Number of nodes in the tree
‘time’, T Period to simulate dynamic model toward random point
‘range’, R Specify rectangular bounds

• R scalar; X: -R to +R, Y: -R to +R

• R (1× 2); X: -R(1) to +R(1), Y: -R(2) to +R(2)

• R (1× 4); X: R(1) to R(2), Y: R(3) to R(4)

‘goal’, P Goal position (1× 2) or pose (1× 3) in workspace
‘speed’, S Speed of vehicle [m/s] (default 1)
‘steermax’, S Maximum steer angle of vehicle [rad] (default 1.2)

Notes

• Does not (yet) support obstacles, ie. map is ignored but must be given.

• ‘steermax’ selects the range of steering angles that the vehicle will be asked to
track. If not given the steering angle range of the vehicle will be used.

Robotics Toolbox 9.7 for MATLAB
R©

121 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

• There is no check that the steering range or speed is within the limits of the
vehicle object.

Reference

• Robotics, Vision & Control Peter Corke, Springer 2011. p102.

See also

Vehicle

RRT.char
Convert to string

R.char() is a string representing the state of the RRT object in human-readable form.

invoke the superclass char() method

RRT.path
Find a path between two points

x = R.path(start, goal) finds a path (N×3) from state start (1×3) to the goal (1×3).

P.path(start, goal) as above but plots the path in 3D. The nodes are shown as circles
and the line segments are blue for forward motion and red for backward motion.

Notes

• The path starts at the vertex closest to the start state, and ends at the vertex
closest to the goal state. If the tree is sparse this might be a poor approximation
to the desired start and end.

RRT.plan
Create a rapidly exploring tree

R.plan(options) creates the tree roadmap by driving the vehicle model toward random
goal points. The resulting graph is kept within the object.

Robotics Toolbox 9.7 for MATLAB
R©

122 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘goal’, P Goal pose (1× 3)
‘noprogress’ Don’t show the progress bar
‘samples’ Show samples

• ‘.’ for each random point x rand

• ‘o’ for the nearest point which is added to the tree

• red line for the best path

RRT.plot
Visualize navigation environment

R.plot() displays the navigation tree in 3D.

rt2tr
Convert rotation and translation to homogeneous transform

TR = rt2tr(R, t) is a homogeneous transformation matrix (M × M) formed from
an orthonormal rotation matrix R (N × N) and a translation vector t (N × 1) where
M=N+1.

For a sequence R (N ×N ×K) and t (kxN) results in a transform sequence (NxNxk).

Notes

• Works for R in SO(2) or SO(3)

– If R is 2× 2 and t is 2× 1, then TR is 3× 3

– If R is 3× 3 and t is 3× 1, then TR is 4× 4

• The validity of R is not checked

See also

t2r, r2t, tr2rt

Robotics Toolbox 9.7 for MATLAB
R©

123 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

rtdemo
Robot toolbox demonstrations

Displays popup menu of toolbox demonstration scripts that illustrate:

• homogeneous transformations

• trajectories

• forward kinematics

• inverse kinematics

• robot animation

• inverse dynamics

• forward dynamics

Notes

• The scripts require the user to periodically hit <Enter> in order to move through
the explanation.

• Set PAUSE OFF if you want the scripts to run completely automatically.

se2
Create planar translation and rotation transformation

T = se2(x, y, theta) is a 3 × 3 homogeneous transformation SE(2) representing trans-
lation x and y, and rotation theta in the plane.

T = se2(xy) as above where xy=[x,y] and rotation is zero

T = se2(xy, theta) as above where xy=[x,y]

T = se2(xyt) as above where xyt=[x,y,theta]

See also

trplot2

Robotics Toolbox 9.7 for MATLAB
R©

124 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Sensor
Sensor superclass

An abstact superclass to represent robot navigation sensors.

Methods

display print the parameters in human readable form
char convert to string

Properties

robot The Vehicle object on which the sensor is mounted
map The Map object representing the landmarks around the robot

Reference

Robotics, Vision & Control, Peter Corke, Springer 2011

See also

EKF, Vehicle, Map

Sensor.Sensor
Sensor object constructor

s = Sensor(vehicle, map) is a sensor mounted on the Vehicle object vehicle and ob-
serving the landmark map map. s = Sensor(vehicle, map, R) is an instance of the
Sensor object mounted on a vehicle represented by the object vehicle and observing
features in the world represented by the object map.

Sensor.char
Convert sensor parameters to a string

s = S.char() is a string showing sensor parameters in a compact human readable format.

Robotics Toolbox 9.7 for MATLAB
R©

125 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Sensor.display
Display status of sensor object

S.display() displays the state of the sensor object in human-readable form.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a Sensor object and the command has no trailing semicolon.

See also

Sensor.char

SerialLink
Serial-link robot class

A concrete class that represents a serial-link arm-type robot. The mechanism is de-
scribed using Denavit-Hartenberg parameters, one set per joint.

Methods

plot display graphical representation of robot
teach drive the graphical robot
isspherical test if robot has spherical wrist
islimit test if robot at joint limit

fkine forward kinematics
ikine6s inverse kinematics for 6-axis spherical wrist revolute robot
ikine3 inverse kinematics for 3-axis revolute robot
ikine inverse kinematics using iterative method
jacob0 Jacobian matrix in world frame
jacobn Jacobian matrix in tool frame
maniplty manipulability

jtraj a joint space trajectory

Robotics Toolbox 9.7 for MATLAB
R©

126 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

accel joint acceleration
coriolis Coriolis joint force
dyn show dynamic properties of links
fdyn joint motion
friction friction force
gravload gravity joint force
inertia joint inertia matrix
nofriction set friction parameters to zero
rne joint torque/force
payload add a payload in end-effector frame
perturb randomly perturb link dynamic parameters

Properties (read/write)

links vector of Link objects (1×N)
gravity direction of gravity [gx gy gz]
base pose of robot’s base (4× 4 homog xform)
tool robot’s tool transform, T6 to tool tip (4× 4 homog xform)
qlim joint limits, [qmin qmax] (N × 2)
offset kinematic joint coordinate offsets (N × 1)
name name of robot, used for graphical display
manuf annotation, manufacturer’s name
comment annotation, general comment
plotopt options for plot() method (cell array)

Object properties (read only)

n number of joints
config joint configuration string, eg. ‘RRRRRR’
mdh kinematic convention boolean (0=DH, 1=MDH)

Note

• SerialLink is a reference object.

• SerialLink objects can be used in vectors and arrays

Reference

• Robotics, Vision & Control, Chaps 7-9, P. Corke, Springer 2011.

• Robot, Modeling & Control, M.Spong, S. Hutchinson & M. Vidyasagar, Wiley
2006.

Robotics Toolbox 9.7 for MATLAB
R©

127 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Link, DHFactor

SerialLink.SerialLink
Create a SerialLink robot object

R = SerialLink(links, options) is a robot object defined by a vector of Link objects.

R = SerialLink(dh, options) is a robot object with kinematics defined by the matrix
dh which has one row per joint and each row is [theta d a alpha] and joints are as-
sumed revolute. An optional fifth column sigma indicate revolute (sigma=0, default)
or prismatic (sigma=1).

R = SerialLink(options) is a null robot object with no links.

R = SerialLink([R1 R2 ...], options) concatenate robots, the base of R2 is attached to
the tip of R1.

R = SerialLink(R1, options) is a deep copy of the robot object R1, with all the same
properties.

Options

‘name’, name set robot name property
‘comment’, comment set robot comment property
‘manufacturer’, manuf set robot manufacturer property
‘base’, base set base transformation matrix property
‘tool’, tool set tool transformation matrix property
‘gravity’, g set gravity vector property
‘plotopt’, po set plotting options property

Examples

Create a 2-link robot

L(1) = Link([0 0 a1 0], ‘standard’);
L(2) = Link([0 0 a2 0], ‘standard’);

twolink = SerialLink(L, ’name’, ’two link’);

Robot objects can be concatenated in two ways

R = R1 * R2;
R = SerialLink([R1 R2]);

Robotics Toolbox 9.7 for MATLAB
R©

128 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Note

• SerialLink is a reference object, a subclass of Handle object.

• SerialLink objects can be used in vectors and arrays

• When robots are concatenated (either syntax) the intermediate base and tool
transforms are removed since general constant transforms cannot be represented
in Denavit-Hartenberg notation.

See also

Link, SerialLink.plot

SerialLink.accel
Manipulator forward dynamics

qdd = R.accel(q, qd, torque) is a vector (N × 1) of joint accelerations that result from
applying the actuator force/torque to the manipulator robot in state q and qd. If q, qd,
torque are matrices (K × N) then qdd is a matrix (K × N) where each row is the
acceleration corresponding to the equivalent rows of q, qd, torque.

qdd = R.accel(x) as above but x=[q,qd,torque].

Note

• Uses the method 1 of Walker and Orin to compute the forward dynamics.

• This form is useful for simulation of manipulator dynamics, in conjunction with
a numerical integration function.

References

• Efficient dynamic computer simulation of robotic mechanisms, M. W. Walker
and D. E. Orin, ASME Journa of Dynamic Systems, Measurement and Control,
vol. 104, no. 3, pp. 205-211, 1982.

See also

SerialLink.rne, SerialLink, ode45

Robotics Toolbox 9.7 for MATLAB
R©

129 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

SerialLink.animate
Update a robot animation

R.animate(q) updates an existing animation for the robot R. This will have been cre-
ated using R.plot().

Updates graphical instances of this robot in all figures.

Notes

• Not a general purpose method, used for Simulink robot animation.

See also

SerialLink.plot

SerialLink.char
Convert to string

s = R.char() is a string representation of the robot’s kinematic parameters, showing
DH parameters, joint structure, comments, gravity vector, base and tool transform.

SerialLink.cinertia
Cartesian inertia matrix

m = R.cinertia(q) is the N × N Cartesian (operational space) inertia matrix which
relates Cartesian force/torque to Cartesian acceleration at the joint configuration q, and
N is the number of robot joints.

See also

SerialLink.inertia, SerialLink.rne

Robotics Toolbox 9.7 for MATLAB
R©

130 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

SerialLink.coriolis
Coriolis matrix

C = R.coriolis(q, qd) is the Coriolis/centripetal matrix (N ×N) for the robot in con-
figuration q and velocity qd, where N is the number of joints. The product C*qd is
the vector of joint force/torque due to velocity coupling. The diagonal elements are
due to centripetal effects and the off-diagonal elements are due to Coriolis effects. This
matrix is also known as the velocity coupling matrix, since gives the disturbance forces
on all joints due to velocity of any joint.

If q and qd are matrices (K ×N), each row is interpretted as a joint state vector, and
the result (N ×N ×K) is a 3d-matrix where each plane corresponds to a row of q and
qd.

C = R.coriolis(qqd) as above but the matrix qqd (1× 2N) is [q qd].

Notes

• Joint friction is also a joint force proportional to velocity but it is eliminated in
the computation of this value.

• Computationally slow, involves N2/2 invocations of RNE.

See also

SerialLink.rne

SerialLink.display
Display parameters

R.display() displays the robot parameters in human-readable form.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a SerialLink object and the command has no trailing semicolon.

See also

SerialLink.char, SerialLink.dyn

Robotics Toolbox 9.7 for MATLAB
R©

131 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

SerialLink.dyn
display inertial properties

R.dyn() displays the inertial properties of the SerialLink object in a multi-line format.
The properties shown are mass, centre of mass, inertia, gear ratio, motor inertia and
motor friction.

R.dyn(J) as above but display parameters for joint J only.

See also

Link.dyn

SerialLink.fdyn
Integrate forward dynamics

[T,q,qd] = R.fdyn(T1, torqfun) integrates the dynamics of the robot over the time
interval 0 to T and returns vectors of time TI, joint position q and joint velocity qd.
The initial joint position and velocity are zero. The torque applied to the joints is
computed by the user function torqfun:

[ti,q,qd] = R.fdyn(T, torqfun, q0, qd0) as above but allows the initial joint position
and velocity to be specified.

The control torque is computed by a user defined function

TAU = TORQFUN(T, Q, QD, ARG1, ARG2, ...)

where q and qd are the manipulator joint coordinate and velocity state respectively,
and T is the current time.

[T,q,qd] = R.fdyn(T1, torqfun, q0, qd0, ARG1, ARG2, ...) allows optional arguments
to be passed through to the user function.

Note

• This function performs poorly with non-linear joint friction, such as Coulomb
friction. The R.nofriction() method can be used to set this friction to zero.

• If torqfun is not specified, or is given as 0 or [], then zero torque is applied to
the manipulator joints.

• The builtin integration function ode45() is used.

Robotics Toolbox 9.7 for MATLAB
R©

132 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

SerialLink.accel, SerialLink.nofriction, SerialLink.rne, ode45

SerialLink.fkine

evaluate fkine for each point on a trajectory of theta i or q i data

SerialLink.friction
Friction force

tau = R.friction(qd) is the vector of joint friction forces/torques for the robot moving
with joint velocities qd.

The friction model includes:

• viscous friction which is linear with velocity;

• Coulomb friction which is proportional to sign(qd).

See also

Link.friction

SerialLink.gravload
Gravity loading

taug = R.gravload(q) is the joint gravity loading for the robot in the joint configuration
q. Gravitational acceleration is a property of the robot object.

If q is a row vector, the result is a row vector of joint torques. If q is a matrix, each row
is interpreted as a joint configuration vector, and the result is a matrix each row being
the corresponding joint torques.

taug = R.gravload(q, grav) is as above but the gravitational acceleration vector grav
is given explicitly.

Robotics Toolbox 9.7 for MATLAB
R©

133 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

SerialLink.rne, SerialLink.itorque, SerialLink.coriolis

SerialLink.ikine
default parameters for solution

SerialLink.ikine3
Inverse kinematics for 3-axis robot with no wrist

q = R.ikine3(T) is the joint coordinates corresponding to the robot end-effector pose
T represented by the homogenenous transform. This is a analytic solution for a 3-axis
robot (such as the first three joints of a robot like the Puma 560).

q = R.ikine3(T, config) as above but specifies the configuration of the arm in the form
of a string containing one or more of the configuration codes:

‘l’ arm to the left (default)
‘r’ arm to the right
‘u’ elbow up (default)
‘d’ elbow down

Notes

• The same as IKINE6S without the wrist.

• The inverse kinematic solution is generally not unique, and depends on the con-
figuration string.

• Joint offsets, if defined, are added to the inverse kinematics to generate q.

Reference

Inverse kinematics for a PUMA 560 based on the equations by Paul and Zhang From
The International Journal of Robotics Research Vol. 5, No. 2, Summer 1986, p. 32-44

Author

Robert Biro with Gary Von McMurray, GTRI/ATRP/IIMB, Georgia Institute of Tech-
nology 2/13/95

Robotics Toolbox 9.7 for MATLAB
R©

134 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

SerialLink.FKINE, SerialLink.IKINE

SerialLink.ikine6s
Inverse kinematics for 6-axis robot with spherical wrist

q = R.ikine6s(T) is the joint coordinates corresponding to the robot end-effector pose
T represented by the homogenenous transform. This is a analytic solution for a 6-axis
robot with a spherical wrist (such as the Puma 560).

q = R.IKINE6S(T, config) as above but specifies the configuration of the arm in the
form of a string containing one or more of the configuration codes:

‘l’ arm to the left (default)
‘r’ arm to the right
‘u’ elbow up (default)
‘d’ elbow down
‘n’ wrist not flipped (default)
‘f’ wrist flipped (rotated by 180 deg)

Notes

• Only applicable for an all revolute 6-axis robot RRRRRR.

• The inverse kinematic solution is generally not unique, and depends on the con-
figuration string.

• Joint offsets, if defined, are added to the inverse kinematics to generate q.

Reference

• Inverse kinematics for a PUMA 560, Paul and Zhang, The International Journal
of Robotics Research, Vol. 5, No. 2, Summer 1986, p. 32-44

Author

Robert Biro with Gary Von McMurray, GTRI/ATRP/IIMB, Georgia Institute of Tech-
nology 2/13/95

See also

SerialLink.FKINE, SerialLink.IKINE

Robotics Toolbox 9.7 for MATLAB
R©

135 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

SerialLink.inertia
Manipulator inertia matrix

i = R.inertia(q) is the symmetric joint inertia matrix (N × N) which relates joint
torque to joint acceleration for the robot at joint configuration q.

If q is a matrix (K ×N), each row is interpretted as a joint state vector, and the result
is a 3d-matrix (N × N × K) where each plane corresponds to the inertia for the
corresponding row of q.

Notes

• The diagonal elements i(J,J) are the inertia seen by joint actuator J.

• The off-diagonal elements i(J,K) are coupling inertias that relate acceleration on
joint J to force/torque on joint K.

• The diagonal terms include the motor inertia reflected through the gear ratio.

See also

SerialLink.RNE, SerialLink.CINERTIA, SerialLink.ITORQUE

SerialLink.islimit
Joint limit test

v = R.islimit(q) is a vector of boolean values, one per joint, false (0) if q(i) is within
the joint limits, else true (1).

Notes

• Joint limits are purely advisory and are not used in any other function. Just
seemed like a useful thing to include...

See also

Link.islimit

Robotics Toolbox 9.7 for MATLAB
R©

136 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

SerialLink.isspherical
Test for spherical wrist

R.isspherical() is true if the robot has a spherical wrist, that is, the last 3 axes are
revolute and their axes intersect at a point.

See also

SerialLink.ikine6s

SerialLink.itorque
Inertia torque

taui = R.itorque(q, qdd) is the inertia force/torque vector (1×N) at the specified joint
configuration q (1×N) and acceleration qdd (1×N), that is, taui = INERTIA(q)*qdd.

If q and qdd are matrices (K ×N), each row is interpretted as a joint state vector, and
the result is a matrix (K ×N) where each row is the corresponding joint torques.

Note

• If the robot model contains non-zero motor inertia then this will included in the
result.

See also

SerialLink.rne, SerialLink.inertia

SerialLink.jacob0
Jacobian in world coordinates

j0 = R.jacob0(q, options) is the Jacobian matrix (6×N) for the robot in pose q (1×N).
The manipulator Jacobian matrix maps joint velocity to end-effector spatial velocity V
= j0*QD expressed in the world-coordinate frame.

Robotics Toolbox 9.7 for MATLAB
R©

137 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘rpy’ Compute analytical Jacobian with rotation rate in terms of roll-pitch-yaw angles
‘eul’ Compute analytical Jacobian with rotation rates in terms of Euler angles
‘trans’ Return translational submatrix of Jacobian
‘rot’ Return rotational submatrix of Jacobian

Note

• The Jacobian is computed in the world frame and transformed to the end-effector
frame.

• The default Jacobian returned is often referred to as the geometric Jacobian, as
opposed to the analytical Jacobian.

See also

SerialLink.jacobn, jsingu, deltatr, tr2delta, jsingu

SerialLink.jacob dot
Derivative of Jacobian

jdq = R.jacob dot(q, qd) is the product (6×1) of the derivative of the Jacobian (in the
world frame) and the joint rates.

Notes

• Useful for operational space control XDD = J(q)QDD + JDOT(q)qd

• Written as per the text and not very efficient.

References

• Fundamentals of Robotics Mechanical Systems (2nd ed) J. Angleles, Springer
2003.

See also

: SerialLink.jacob0, diff2tr, tr2diff

Robotics Toolbox 9.7 for MATLAB
R©

138 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

SerialLink.jacobn
Jacobian in end-effector frame

jn = R.jacobn(q, options) is the Jacobian matrix (6×N) for the robot in pose q. The
manipulator Jacobian matrix maps joint velocity to end-effector spatial velocity V =
jn*QD in the end-effector frame.

Options

‘trans’ Return translational submatrix of Jacobian
‘rot’ Return rotational submatrix of Jacobian

Notes

• This Jacobian is often referred to as the geometric Jacobian.

Reference

Differential Kinematic Control Equations for Simple Manipulators, Paul, Shimano,
Mayer, IEEE SMC 11(6) 1981, pp. 456-460

See also

SerialLink.jacob0, jsingu, delta2tr, tr2delta

SerialLink.jtraj
Joint space trajectory

q = R.jtraj(T1, t2, k) is a joint space trajectory (k × N) where the joint coordinates
reflect motion from end-effector pose T1 to t2 in k steps with default zero boundary
conditions for velocity and acceleration. The trajectory q has one row per time step,
and one column per joint, where N is the number of robot joints.

Note

• Requires solution of inverse kinematics. R.ikine6s() is used if appropriate, else
R.ikine(). Additional trailing arguments to R.jtraj() are passed as trailing arug-
ments to these functions.

Robotics Toolbox 9.7 for MATLAB
R©

139 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

jtraj, SerialLink.ikine, SerialLink.ikine6s

SerialLink.maniplty
Manipulability measure

m = R.maniplty(q, options) is the manipulability index measure for the robot at the
joint configuration q. It indicates dexterity, that is, how isotropic the robot’s motion
is with respect to the 6 degrees of Cartesian motion. The measure is high when the
manipulator is capable of equal motion in all directions and low when the manipulator
is close to a singularity.

If q is a matrix (m ×N) then m (m × 1) is a vector of manipulability indices for each
pose specified by a row of q.

[m,ci] = R.maniplty(q, options) as above, but for the case of the Asada measure re-
turns the Cartesian inertia matrix ci.

Two measures can be selected:

• Yoshikawa’s manipulability measure is based on the shape of the velocity ellip-
soid and depends only on kinematic parameters.

• Asada’s manipulability measure is based on the shape of the acceleration ellip-
soid which in turn is a function of the Cartesian inertia matrix and the dynamic
parameters. The scalar measure computed here is the ratio of the smallest/largest
ellipsoid axis. Ideally the ellipsoid would be spherical, giving a ratio of 1, but in
practice will be less than 1.

Options

‘T’ manipulability for transational motion only
‘R’ manipulability for rotational motion only
‘yoshikawa’ use Yoshikawa algorithm (default)
‘asada’ use Asada algorithm

Notes

• By default the measure includes rotational and translational dexterity, but this
involves adding different units. It can be more useful to look at the translational
and rotational manipulability separately.

Robotics Toolbox 9.7 for MATLAB
R©

140 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

References

• Analysis and control of robot manipulators with redundancy, T. Yoshikawa, Robotics
Research: The First International Symposium (m. Brady and R. Paul, eds.), pp.
735-747, The MIT press, 1984.

• A geometrical representation of manipulator dynamics and its application to arm
design, H. Asada, Journal of Dynamic Systems, Measurement, and Control, vol.
105, p. 131, 1983.

See also

SerialLink.inertia, SerialLink.jacob0

SerialLink.mtimes
Concatenate robots

R = R1 * R2 is a robot object that is equivalent to mechanically attaching robot R2 to
the end of robot R1.

Notes

• If R1 has a tool transform or R2 has a base transform these are discarded since
DH convention does not allow for arbitrary intermediate transformations.

SerialLink.nofriction
Remove friction

rnf = R.nofriction() is a robot object with the same parameters as R but with non-linear
(Coulomb) friction coefficients set to zero.

rnf = R.nofriction(’all’) as above but all friction coefficients set to zero.

rnf = R.nofriction(’viscous’) as above but only viscous friction coefficients are set to
zero.

Notes

• Non-linear (Coulomb) friction can cause numerical problems when integrating
the equations of motion (R.fdyn).

• The resulting robot object has its name string prefixed with ‘NF/’.

Robotics Toolbox 9.7 for MATLAB
R©

141 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

SerialLink.fdyn, Link.nofriction

SerialLink.payload
Add payload mass

R.payload(m, p) adds a payload with point mass m at position p in the end-effector
coordinate frame.

See also

SerialLink.rne, SerialLink.gravload

SerialLink.perturb
Perturb robot parameters

rp = R.perturb(p) is a new robot object in which the dynamic parameters (link mass
and inertia) have been perturbed. The perturbation is multiplicative so that values are
multiplied by random numbers in the interval (1-p) to (1+p). The name string of the
perturbed robot is prefixed by ‘p/’.

Useful for investigating the robustness of various model-based control schemes. For
example to vary parameters in the range +/- 10 percent is:

r2 = p560.perturb(0.1);

SerialLink.plot
Graphical display and animation

R.plot(q, options) displays a graphical animation of a robot based on the kinematic
model. A stick figure polyline joins the origins of the link coordinate frames. The
robot is displayed at the joint angle q (1 × N), or if a matrix (M × N) it is animated
as the robot moves along the M-point trajectory.

Robotics Toolbox 9.7 for MATLAB
R©

142 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘workspace’, W size of robot 3D workspace, W = [xmn, xmx ymn ymx zmn zmx]
‘delay’, d delay betwen frames for animation (s)
‘fps’, fps set number of frames per second for display
‘[no]loop’ loop over the trajectory forever
‘mag’, scale annotation scale factor
‘cylinder’, C color for joint cylinders, C=[r g b]
‘ortho’ orthogonal camera view (default)
‘perspective’ perspective camera view
‘xyz’ wrist axis label is XYZ
‘noa’ wrist axis label is NOA
‘[no]raise’ autoraise the figure (very slow).
‘[no]render’ controls shaded rendering after drawing
‘[no]base’ controls display of base ‘pedestal’
‘[no]wrist’ controls display of wrist
‘[no]shadow’ controls display of shadow
‘[no]name’ display the robot’s name
‘[no]jaxes’ control display of joint axes
‘[no]joints’ controls display of joints
‘movie’, M save frames as files in the folder M

The options come from 3 sources and are processed in order:

• Cell array of options returned by the function PLOTBOTOPT (if it exists)

• Cell array of options given by the ‘plotopt’ option when creating the SerialLink
object.

• List of arguments in the command line.

Many boolean options can be enabled or disabled with the ‘no’ prefix. The various
option sources can toggle an option, the last value is taken.

Graphical annotations and options

The robot is displayed as a basic stick figure robot with annotations such as:

• shadow on the floor

• XYZ wrist axes and labels

• joint cylinders and axes

which are controlled by options.

The size of the annotations is determined using a simple heuristic from the workspace
dimensions. This dimension can be changed by setting the multiplicative scale factor
using the ‘mag’ option.

Figure behaviour

• If no figure exists one will be created and teh robot drawn in it.

Robotics Toolbox 9.7 for MATLAB
R©

143 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

• If no robot of this name is currently displayed then a robot will be drawn in the
current figure. If hold is enabled (hold on) then the robot will be added to the
current figure.

• If the robot already exists then that graphical model will be found and moved.

Multiple views of the same robot

If one or more plots of this robot already exist then these will all be moved according
to the argument q. All robots in all windows with the same name will be moved.

Create a robot in figure 1

figure(1)
p560.plot(qz);

Create a robot in figure 2

figure(2)
p560.plot(qz);

Now move both robots

p560.plot(qn)

Multiple robots in the same figure

Multiple robots can be displayed in the same plot, by using “hold on” before calls to
robot.plot().

Create a robot in figure 1

figure(1)
p560.plot(qz);

Make a clone of the robot named bob

bob = SerialLink(p560, ’name’, ’bob’);

Draw bob in this figure

hold on
bob.plot(qn)

To animate both robots so they move together:

qtg = jtraj(qr, qz, 100);
for q=qtg’

p560.plot(q’);
bob.plot(q’);

end

Making an animation movie

• The ‘movie’ options saves frames as files NNNN.png.

• When using ‘movie’ option ensure that the window is fully visible.

Robotics Toolbox 9.7 for MATLAB
R©

144 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

• To convert frames to a movie use a command like:

ffmpeg -r 10 -i %04d.png out.avi

Notes

• Delay betwen frames can be eliminated by setting option ‘delay’, 0 or ‘fps’, Inf.

• By default a quite detailed plot is generated, but turning off labels, axes, shadows
etc. will speed things up.

• Each graphical robot object is tagged by the robot’s name and has UserData that
holds graphical handles and the handle of the robot object.

• The graphical state holds the last joint configuration which can be retrieved using
q = robot.plot().

See also

plotbotopt, SerialLink.animate, SerialLink.fkine

SerialLink.plot options
a cell array of options and return a struct

SerialLink.rne
Inverse dynamics

tau = R.rne(q, qd, qdd) is the joint torque required for the robot R to achieve the
specified joint position q, velocity qd and acceleration qdd.

tau = R.rne(q, qd, qdd, grav) as above but overriding the gravitational acceleration
vector in the robot object R.

tau = R.rne(q, qd, qdd, grav, fext) as above but specifying a wrench acting on the end
of the manipulator which is a 6-vector [Fx Fy Fz Mx My Mz].

tau = R.rne(x) as above where x=[q,qd,qdd].

tau = R.rne(x, grav) as above but overriding the gravitational acceleration vector in
the robot object R.

tau = R.rne(x, grav, fext) as above but specifying a wrench acting on the end of the
manipulator which is a 6-vector [Fx Fy Fz Mx My Mz].

[tau,wbase] = R.rne(x, grav, fext) as above but the extra output is the wrench on the
base.

Robotics Toolbox 9.7 for MATLAB
R©

145 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

If q,qd and qdd (M × N), or x (M × 3N) are matrices with M rows representing a
trajectory then tau (M × N) is a matrix with rows corresponding to each trajectory
step.

Notes

• The robot base transform is ignored.

• The torque computed contains a contribution due to armature inertia and joint
friction.

• rne can be either an M-file or a MEX-file.

• See the README file in the mex folder for details on how to configure MEX-file
operation.

• The M-file is a wrapper which calls either RNE DH or RNE MDH depending
on the kinematic conventions used by the robot object.

• Currently the MEX-file version does not compute wbase.

See also

SerialLink.accel, SerialLink.gravload, SerialLink.inertia

SerialLink.teach
Graphical teach pendant

R.teach(options) drive a graphical robot by means of a graphical slider panel. If no
graphical robot exists one is created in a new window. Otherwise all current instances
of the graphical robot are driven.

h = R.teach(options) as above but returns a handle for the teach window. Can be used
to programmatically delete the teach window.

Options

‘eul’ Display tool orientation in Euler angles
‘rpy’ Display tool orientation in roll/pitch/yaw angles
‘approach’ Display tool orientation as approach vector (z-axis)
‘degrees’ Display angles in degrees (default radians)
‘q0’, q Set initial joint coordinates

Robotics Toolbox 9.7 for MATLAB
R©

146 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

GUI

• The record button adds the current joint coordinates as a row to the robot’s qteach
property.

• The Quit button destroys the teach window.

Notes

• The slider limits are derived from the joint limit properties. If not set then for

– a revolute joint they are assumed to be [-pi, +pi]

– a prismatic joint they are assumed unknown and an error occurs.

See also

SerialLink.plot

SerialLink.teach callback
on changes to a slider or to the edit box showing joint coor-
dinate

src the object that caused the event
name name of the robot
j the joint index concerned (1..N)
slider true if the

skew
Create skew-symmetric matrix

s = skew(v) is a skew-symmetric matrix formed from v (3× 1).

| 0 -vz vy|
| vz 0 -vx|
|-vy vx 0 |

Robotics Toolbox 9.7 for MATLAB
R©

147 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

vex

startup rtb
Initialize MATLAB paths for Robotics Toolbox

Adds demos, examples to the MATLAB path, and adds also to Java class path.

t2r
Return rotational submatrix of a homogeneous transforma-
tion

R = t2r(T) is the orthonormal rotation matrix component of homogeneous transforma-
tion matrix T:

Notes

• Works for T in SE(2) or SE(3)

– If T is 4× 4, then R is 3× 3.

– If T is 3× 3, then R is 2× 2.

• The validity of rotational part is not checked

• For a homogeneous transform sequence returns a rotation matrix sequence

See also

r2t, tr2rt, rt2tr

Robotics Toolbox 9.7 for MATLAB
R©

148 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

tb optparse
Standard option parser for Toolbox functions

[optout,args] = tb optparse(opt, arglist) is a generalized option parser for Toolbox
functions. It supports options that have an assigned value, boolean or enumeration
types (string or int).

The software pattern is:

function(a, b, c, varargin)
opt.foo = true;
opt.bar = false;
opt.blah = [];
opt.choose = {’this’, ’that’, ’other’};
opt.select = {’#no’, ’#yes’};
opt = tb_optparse(opt, varargin);

Optional arguments to the function behave as follows:

‘foo’ sets opt.foo <- true
‘nobar’ sets opt.foo <- false
‘blah’, 3 sets opt.blah <- 3
‘blah’, x,y sets opt.blah <- x,y
‘that’ sets opt.choose <- ‘that’
‘yes’ sets opt.select <- 2 (the second element)

and can be given in any combination.

If neither of ‘this’, ‘that’ or ‘other’ are specified then opt.choose <- ‘this’. Alternatively
if:

opt.choose = {[], ’this’, ’that’, ’other’};

then if neither of ‘this’, ‘that’ or ‘other’ are specified then opt.choose <- []

If neither of ‘no’ or ‘yes’ are specified then opt.select <- 1.

Note:

• That the enumerator names must be distinct from the field names.

• That only one value can be assigned to a field, if multiple values

are required they must be converted to a cell array.

• To match an option that starts with a digit, prefix it with ‘d ’, so the field ‘d 3d’
matches the option ‘3d’.

The allowable options are specified by the names of the fields in the structure opt. By
default if an option is given that is not a field of opt an error is declared.

Sometimes it is useful to collect the unassigned options and this can be achieved using
a second output argument

[opt,arglist] = tb_optparse(opt, varargin);

which is a cell array of all unassigned arguments in the order given in varargin.

Robotics Toolbox 9.7 for MATLAB
R©

149 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

The return structure is automatically populated with fields: verbose and debug. The
following options are automatically parsed:

‘verbose’ sets opt.verbose <- true
‘verbose=2’ sets opt.verbose <- 2 (very verbose)
‘verbose=3’ sets opt.verbose <- 3 (extremeley verbose)
‘verbose=4’ sets opt.verbose <- 4 (ridiculously verbose)
‘debug’, N sets opt.debug <- N
‘setopt’, S sets opt <- S
‘showopt’ displays opt and arglist

tpoly
Generate scalar polynomial trajectory

[s,sd,sdd] = tpoly(s0, sf, m) is a scalar trajectory (m× 1) that varies smoothly from s0
to sf in m steps using a quintic (5th order) polynomial. Velocity and acceleration can
be optionally returned as sd (m × 1) and sdd (m × 1).

[s,sd,sdd] = tpoly(s0, sf, T) as above but specifies the trajectory in terms of the length
of the time vector T (m × 1).

Notes

• If no output arguments are specified s, sd, and sdd are plotted.

tr2angvec
Convert rotation matrix to angle-vector form

[theta,v] = tr2angvec(R) converts an orthonormal rotation matrix R into a rotation of
theta (1× 1) about the axis v (1× 3).

[theta,v] = tr2angvec(T) as above but uses the rotational part of the homogeneous
transform T.

If R (3×3×K) or T (4×4×K) represent a sequence then theta (K×1)is a vector of
angles for corresponding elements of the sequence and v (K×3) are the corresponding
axes, one per row.

Robotics Toolbox 9.7 for MATLAB
R©

150 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• If no output arguments are specified the result is displayed.

• This algorithm is from Paul 1981, other solutions are possible using eigenvectors
or Rodriguez formula.

See also

angvec2r, angvec2tr

tr2delta
Convert homogeneous transform to differential motion

d = tr2delta(T0, T1) is the differential motion (6× 1) corresponding to infinitessimal
motion from pose T0 to T1 which are homogeneous transformations. d=(dx, dy, dz,
dRx, dRy, dRz) and is an approximation to the average spatial velocity multiplied by
time.

d = tr2delta(T) is the differential motion corresponding to the infinitessimal relative
pose T expressed as a homogeneous transformation.

Notes

• d is only an approximation to the motion T, and assumes that T0 T1 or T
eye(4,4).

See also

delta2tr, skew

tr2eul
Convert homogeneous transform to Euler angles

eul = tr2eul(T, options) are the ZYZ Euler angles expressed as a row vector corre-
sponding to the rotational part of a homogeneous transform T. The 3 angles eul=[PHI,THETA,PSI]
correspond to sequential rotations about the Z, Y and Z axes respectively.

Robotics Toolbox 9.7 for MATLAB
R©

151 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

eul = tr2eul(R, options) are the ZYZ Euler angles expressed as a row vector corre-
sponding to the orthonormal rotation matrix R.

If R or T represents a trajectory (has 3 dimensions), then each row of eul corresponds
to a step of the trajectory.

Options

‘deg’ Compute angles in degrees (radians default)

Notes

• There is a singularity for the case where THETA=0 in which case PHI is arbi-
trarily set to zero and PSI is the sum (PHI+PSI).

See also

eul2tr, tr2rpy

tr2jac
Jacobian for differential motion

J = tr2jac(T) is a Jacobian matrix (6 × 6) that maps spatial velocity or differential
motion from the world frame to the frame represented by the homogeneous transform
T.

See also

wtrans, tr2delta, delta2tr

tr2rpy
Convert a homogeneous transform to roll-pitch-yaw angles

rpy = tr2rpy(T, options) are the roll-pitch-yaw angles expressed as a row vector corre-
sponding to the rotation part of a homogeneous transform T. The 3 angles rpy=[R,P,Y]

Robotics Toolbox 9.7 for MATLAB
R©

152 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

correspond to sequential rotations about the X, Y and Z axes respectively.

rpy = tr2rpy(R, options) are the roll-pitch-yaw angles expressed as a row vector cor-
responding to the orthonormal rotation matrix R.

If R or T represents a trajectory (has 3 dimensions), then each row of rpy corresponds
to a step of the trajectory.

Options

‘deg’ Compute angles in degrees (radians default)
‘zyx’ Return solution for sequential rotations about Z, Y, X axes (Paul book)

Notes

• There is a singularity for the case where P=pi/2 in which case R is arbitrarily set
to zero and Y is the sum (R+Y).

• Note that textbooks (Paul, Spong) use the rotation order ZYX.

See also

rpy2tr, tr2eul

tr2rt
Convert homogeneous transform to rotation and translation

[R,t] = tr2rt(TR) split a homogeneous transformation matrix (N × N) into an or-
thonormal rotation matrix R (M × M) and a translation vector t (M × 1), where
N=M+1.

A homogeneous transform sequence TR (N × N × K) is split into rotation matrix
sequence R (M ×M ×K) and a translation sequence t (K ×M).

Notes

• Works for TR in SE(2) or SE(3)

– If TR is 4× 4, then R is 3× 3 and T is 3× 1.

– If TR is 3× 3, then R is 2× 2 and T is 2× 1.

• The validity of R is not checked.

Robotics Toolbox 9.7 for MATLAB
R©

153 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

rt2tr, r2t, t2r

tranimate
Animate a coordinate frame

tranimate(p1, p2, options) animates a 3D coordinate frame moving from pose p1 to
pose p2. Poses p1 and p2 can be represented by:

• homogeneous transformation matrices (4× 4)

• orthonormal rotation matrices (3× 3)

• Quaternion

tranimate(p, options) animates a coordinate frame moving from the identity pose to
the pose p represented by any of the types listed above.

tranimate(pseq, options) animates a trajectory, where pseq is any of

• homogeneous transformation matrix sequence (4× 4×N)

• orthonormal rotation matrix sequence (3× 3×N)

• Quaternion vector (N × 1)

Options

‘fps’, fps Number of frames per second to display (default 10)
‘nsteps’, n The number of steps along the path (default 50)
‘axis’, A Axis bounds [xmin, xmax, ymin, ymax, zmin, zmax]
‘movie’, M Save frames as files in the folder M

Notes

• The ‘movie’ options saves frames as files NNNN.png.

• When using ‘movie’ option ensure that the window is fully visible.

• To convert frames to a movie use a command like:

ffmpeg -r 10 -i %04d.png out.avi

Robotics Toolbox 9.7 for MATLAB
R©

154 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

trplot

transl
Create translational transform

T = transl(x, y, z) is a homogeneous transform representing a pure translation.

T = transl(p) is a homogeneous transform representing a translation or point p=[x,y,z].
If p (M × 3) it represents a sequence and T (4× 4×M) is a sequence of homogenous
transforms such that T(:,:,i) corresponds to the i’th row of p.

p = transl(T) is the translational part of a homogenous transform as a 3-element col-
umn vector. If T (4 × 4 × M) is a homgoeneous transform sequence the rows of p
(M × 3) are the translational component of the corresponding transform in the se-
quence.

Notes

• Somewhat unusually this function performs a function and its inverse. An his-
torical anomaly.

See also

ctraj

trinterp
Interpolate homogeneous transformations

T = trinterp(T0, T1, s) is a homogeneous transform interpolation between T0 when
s=0 to T1 when s=1. Rotation is interpolated using quaternion spherical linear inter-
polation. If s (N × 1) then T (4 × 4 × N) is a sequence of homogeneous transforms
corresponding to the interpolation values in s.

T = trinterp(T, s) is a transform that varies from the identity matrix when s=0 to T
when R=1. If s (N × 1) then T (4× 4×N) is a sequence of homogeneous transforms
corresponding to the interpolation values in s.

Robotics Toolbox 9.7 for MATLAB
R©

155 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

ctraj, quaternion

trnorm
Normalize a homogeneous transform

tn = trnorm(T) is a normalized homogeneous transformation matrix in which the ro-
tation submatrix R = [N,O,A] is guaranteed to be a proper orthogonal matrix. The O
and A vectors are normalized and the normal vector is formed from N = O x A, and
then we ensure that O and A are orthogonal by O = A x N.

Notes

• Used to prevent finite word length arithmetic causing transforms to become ‘un-
normalized’.

See also

oa2tr

trotx
Rotation about X axis

T = trotx(theta) is a homogeneous transformation (4× 4) representing a rotation radi-
ans about the x-axis.

T = trotx(theta, ‘deg’) as above but theta is in degrees.

Notes

• Translational component is zero.

Robotics Toolbox 9.7 for MATLAB
R©

156 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

rotx, troty, trotz

troty
Rotation about Y axis

T = troty(theta) is a homogeneous transformation (4× 4) representing a rotation radi-
ans about the y-axis.

T = troty(theta, ‘deg’) as above but theta is in degrees.

Notes

• Translational component is zero.

See also

roty, trotx, trotz

trotz
Rotation about Z axis

T = trotz(theta) is a homogeneous transformation (4× 4) representing a rotation radi-
ans about the z-axis.

T = trotz(theta, ‘deg’) as above but theta is in degrees.

Notes

• Translational component is zero.

Robotics Toolbox 9.7 for MATLAB
R©

157 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

See also

rotz, trotx, troty

trplot
Draw a coordinate frame

trplot(T, options) draws a 3D coordinate frame represented by the homogeneous trans-
form T (4× 4).

H = trplot(T, options) as above but returns a handle.

trplot(H, T) moves the coordinate frame described by the handle H to the pose T
(4× 4).

trplot(R, options) draws a 3D coordinate frame represented by the orthonormal rota-
tion matrix R (3× 3).

H = trplot(R, options) as above but returns a handle.

trplot(H, R) moves the coordinate frame described by the handle H to the orientation
R.

Options

‘color’, C The color to draw the axes, MATLAB colorspec C
‘noaxes’ Don’t display axes on the plot
‘axis’, A Set dimensions of the MATLAB axes to A=[xmin xmax ymin ymax zmin zmax]
‘frame’, F The frame is named F and the subscript on the axis labels is F.
‘text opts’, opt A cell array of MATLAB text properties
‘handle’, H Draw in the MATLAB axes specified by the axis handle H
‘view’, V Set plot view parameters V=[az el] angles, or ‘auto’ for view toward origin of coordi-

nate frame
‘arrow’ Use arrows rather than line segments for the axes
‘width’, w Width of arrow tips
‘3d’ Plot in 3D using anaglyph graphics
‘anaglyph’, A Specify anaglyph colors for ‘3d’ as 2 characters for left and right (default colors ‘rc’):

’r’ red
’g’ green
’b’ green
’c’ cyan
’m’ magenta

‘dispar’, D Disparity for 3d display (default 0.1)

Robotics Toolbox 9.7 for MATLAB
R©

158 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Examples

trplot(T, ’frame’, ’A’)
trplot(T, ’frame’, ’A’, ’color’, ’b’)
trplot(T1, ’frame’, ’A’, ’text_opts’, {’FontSize’, 10, ’FontWeight’, ’bold’})

h = trplot(T, ’frame’, ’A’, ’color’, ’b’);
trplot(h, T2);

3D anaglyph plot

trplot(T, ’3d’);

Notes

• The arrow option requires the third party package arrow3.

• The handle H is an hgtransform object.

• When using the form trplot(H, ...) the axes are not rescaled.

• The ‘3d’ option requires that the plot is viewed with anaglyph glasses.

• You cannot specify ‘color’

See also

trplot2, tranimate

trplot2
Plot a planar transformation

trplot2(T, options) draws a 2D coordinate frame represented by the SE(2) homoge-
neous transform T (3× 3).

H = trplot2(T, options) as above but returns a handle.

trplot2(H, T) moves the coordinate frame described by the handle H to the SE(2) pose
T (3× 3).

Robotics Toolbox 9.7 for MATLAB
R©

159 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘axis’, A Set dimensions of the MATLAB axes to A=[xmin xmax ymin ymax]
‘color’, c The color to draw the axes, MATLAB colorspec
‘noaxes’ Don’t display axes on the plot
‘frame’, F The frame is named F and the subscript on the axis labels is F.
‘text opts’, opt A cell array of Matlab text properties
‘handle’, h Draw in the MATLAB axes specified by h
‘view’, V Set plot view parameters V=[az el] angles, or ‘auto’ for view toward origin of coordi-

nate frame
‘arrow’ Use arrows rather than line segments for the axes
‘width’, w Width of arrow tips

Examples

trplot(T, ’frame’, ’A’)
trplot(T, ’frame’, ’A’, ’color’, ’b’)
trplot(T1, ’frame’, ’A’, ’text_opts’, {’FontSize’, 10, ’FontWeight’, ’bold’})

Notes

• The arrow option requires the third party package arrow3.

• Generally it is best to set the axis bounds

See also

trplot

trprint
Compact display of homogeneous transformation

trprint(T, options) displays the homogoneous transform in a compact single-line for-
mat. If T is a homogeneous transform sequence then each element is printed on a
separate line.

s = trprint(T, options) as above but returns the string.

trprint T is the command line form of above, and displays in RPY format.

Robotics Toolbox 9.7 for MATLAB
R©

160 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘rpy’ display with rotation in roll/pitch/yaw angles (default)
‘euler’ display with rotation in ZYX Euler angles
‘angvec’ display with rotation in angle/vector format
‘radian’ display angle in radians (default is degrees)
‘fmt’, f use format string f for all numbers, (default %g)
‘label’, l display the text before the transform

Examples

>> trprint(T2)
t = (0,0,0), RPY = (-122.704,65.4084,-8.11266) deg

>> trprint(T1, ’label’, ’A’)

A:t = (0,0,0), RPY = (-0,0,-0) deg

See also

tr2eul, tr2rpy, tr2angvec

unit
Unitize a vector

vn = unit(v) is a unit vector parallel to v.

Note

• Reports error for the case where norm(v) is zero.

Vehicle
Car-like vehicle class

This class models the kinematics of a car-like vehicle (bicycle model). For given steer-
ing and velocity inputs it updates the true vehicle state and returns noise-corrupted
odometry readings.

Robotics Toolbox 9.7 for MATLAB
R©

161 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

init initialize vehicle state
f predict next state based on odometry
step move one time step and return noisy odometry
control generate the control inputs for the vehicle
update update the vehicle state
run run for multiple time steps
Fx Jacobian of f wrt x
Fv Jacobian of f wrt odometry noise
gstep like step() but displays vehicle
plot plot/animate vehicle on current figure
plot xy plot the true path of the vehicle
add driver attach a driver object to this vehicle
display display state/parameters in human readable form
char convert to string

Static methods

plotv plot/animate a pose on current figure

Properties (read/write)

x true vehicle state (3× 1)
V odometry covariance (2× 2)
odometry distance moved in the last interval (2× 1)
rdim dimension of the robot (for drawing)
L length of the vehicle (wheelbase)
alphalim steering wheel limit
maxspeed maximum vehicle speed
T sample interval
verbose verbosity
x hist history of true vehicle state (N × 3)
driver reference to the driver object
x0 initial state, restored on init()

Examples

Create a vehicle with odometry covariance

v = Vehicle(diag([0.1 0.01].ˆ2);

and display its initial state

v

now apply a speed (0.2m/s) and steer angle (0.1rad) for 1 time step

odo = v.update([0.2, 0.1])

Robotics Toolbox 9.7 for MATLAB
R©

162 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

where odo is the noisy odometry estimate, and the new true vehicle state

v

We can add a driver object

v.add_driver(RandomPath(10))

which will move the vehicle within the region -10<x<10, -10<y<10 which we can
see by

v.run(1000)

which shows an animation of the vehicle moving between randomly selected wayoints.

Notes

• Subclasses the MATLAB handle class which means that pass by reference se-
mantics apply.

Reference

Robotics, Vision & Control, Peter Corke, Springer 2011

See also

RandomPath, EKF

Vehicle.Vehicle
Vehicle object constructor

v = Vehicle(v act, options) creates a Vehicle object with actual odometry covariance
v act (2× 2) matrix corresponding to the odometry vector [dx dtheta].

Options

‘stlim’, A Steering angle limit (default 0.5 rad)
‘vmax’, S Maximum speed (default 5m/s)
‘L’, L Wheel base (default 1m)
‘x0’, x0 Initial state (default (0,0,0))
‘dt’, T Time interval
‘rdim’, R Robot size as fraction of plot window (default 0.2)
‘verbose’ Be verbose

Robotics Toolbox 9.7 for MATLAB
R©

163 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Subclasses the MATLAB handle class which means that pass by reference se-
mantics apply.

Vehicle.add driver
Add a driver for the vehicle

V.add driver(d) connects a driver object d to the vehicle. The driver object has one
public method:

[speed, steer] = D.demand();

that returns a speed and steer angle.

Notes

• The Vehicle.step() method invokes the driver if one is attached.

See also

Vehicle.step, RandomPath

Vehicle.char
Convert to a string

s = V.char() is a string showing vehicle parameters and state in in a compact human
readable format.

See also

Vehicle.display

Vehicle.control
Compute the control input to vehicle

u = V.control(speed, steer) returns a control input (speed,steer) based on provided
controls speed,steer to which speed and steering angle limits have been applied.

Robotics Toolbox 9.7 for MATLAB
R©

164 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

u = V.control() returns a control input (speed,steer) from a “driver” if one is attached,
the driver’s DEMAND() method is invoked. If no driver is attached then speed and
steer angle are assumed to be zero.

See also

Vehicle.step, RandomPath

Vehicle.display
Display vehicle parameters and state

V.display() displays vehicle parameters and state in compact human readable form.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a Vehicle object and the command has no trailing semicolon.

See also

Vehicle.char

Vehicle.f
Predict next state based on odometry

xn = V.f(x, odo) predict next state xn (1 × 3) based on current state x (1 × 3) and
odometry odo (1× 2) is [distance,change heading].

xn = V.f(x, odo, w) as above but with odometry noise w.

Notes

• Supports vectorized operation where x and xn (N × 3).

Robotics Toolbox 9.7 for MATLAB
R©

165 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Vehicle.Fv
Jacobian df/dv

J = V.Fv(x, odo) returns the Jacobian df/dv (3 × 2) at the state x, for odometry input
odo.

See also

Vehicle.F, Vehicle.Fx

Vehicle.Fx
Jacobian df/dx

J = V.Fx(x, odo) is the Jacobian df/dx (3× 3) at the state x, for odometry input odo.

See also

Vehicle.f, Vehicle.Fv

Vehicle.init
Reset state of vehicle object

V.init() sets the state V.x := V.x0, initializes the driver object (if attached) and clears
the history.

V.init(x0) as above but the state is initialized to x0.

Vehicle.plot
Plot vehicle

V.plot(options) plots the vehicle on the current axes at a pose given by the current state.
If the vehicle has been previously plotted its pose is updated. The vehicle is depicted
as a narrow triangle that travels “point first” and has a length V.rdim.

V.plot(x, options) plots the vehicle on the current axes at the pose x.

Robotics Toolbox 9.7 for MATLAB
R©

166 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Vehicle.plot xy
Plots true path followed by vehicle

V.plot xy() plots the true xy-plane path followed by the vehicle.

V.plot xy(ls) as above but the line style arguments ls are passed to plot.

Notes

• The path is extracted from the x hist property.

Vehicle.plotv
Plot ground vehicle pose

H = Vehicle.plotv(x, options) draws a representation of a ground robot as an oriented
triangle with pose x (1× 3) [x,y,theta]. H is a graphics handle. If x (N × 3) is a matrix
it is considered to represent a trajectory in which case the vehicle graphic is animated.

Vehicle.plotv(H, x) as above but updates the pose of the graphic represented by the
handle H to pose x.

Options

‘scale’, S Draw vehicle with length S x maximum axis dimension
‘size’, S Draw vehicle with length S
‘color’, C Color of vehicle.
‘fill’ Filled with solid color as per ‘color’ option
‘fps’, F Frames per second in animation mode (default 10)

Example

Generate some path 3×N

p = PRM.plan(start, goal);

Set the axis dimensions to stop them rescaling for every point on the path

axis([-5 5 -5 5]);

Now invoke the static method

Vehicle.plotv(p);

Robotics Toolbox 9.7 for MATLAB
R©

167 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• This is a static method.

Vehicle.run
Run the vehicle simulation

V.run(n) runs the vehicle model for n timesteps and plots the vehicle pose at each step.

p = V.run(n) runs the vehicle simulation for n timesteps and return the state history
(n × 3) without plotting. Each row is (x,y,theta).

See also

Vehicle.step

Vehicle.run2
run the vehicle simulation

p = V.run2(T, x0, speed, steer) runs the vehicle model for a time T with speed speed
and steering angle steer. p (N × 3) is the path followed and each row is (x,y,theta).

Notes

• Faster and more specific version of run() method.

See also

Vehicle.run, Vehicle.step

Vehicle.step
Advance one timestep

odo = V.step(speed, steer) updates the vehicle state for one timestep of motion at
specified speed and steer angle, and returns noisy odometry.

odo = V.step() updates the vehicle state for one timestep of motion and returns noisy
odometry. If a “driver” is attached then its DEMAND() method is invoked to compute

Robotics Toolbox 9.7 for MATLAB
R©

168 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

speed and steer angle. If no driver is attached then speed and steer angle are assumed
to be zero.

Notes

• Noise covariance is the property V.

See also

Vehicle.control, Vehicle.update, Vehicle.add driver

Vehicle.update
Update the vehicle state

odo = V.update(u) is the true odometry value for motion with u=[speed,steer].

Notes

• Appends new state to state history property x hist.

• Odometry is also saved as property odometry.

Vehicle.verbosity
Set verbosity

V.verbosity(a) set verbosity to a. a=0 means silent.

vex
Convert skew-symmetric matrix to vector

v = vex(s) is the vector (3× 1) which has the skew-symmetric matrix s (3× 3)

| 0 -vz vy|
| vz 0 -vx|
|-vy vx 0 |

Robotics Toolbox 9.7 for MATLAB
R©

169 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• This is the inverse of the function SKEW().

• No checking is done to ensure that the matrix is actually skew-symmetric.

• The function takes the mean of the two elements that correspond to each unique
element of the matrix, ie. vx = 0.5*(s(3,2)-s(2,3))

See also

skew

wtrans
Transform a wrench between coordinate frames

wt = wtrans(T, w) is a wrench (6 × 1) in the frame represented by the homogeneous
transform T (4× 4) corresponding to the world frame wrench w (6× 1).

The wrenches w and wt are 6-vectors of the form [Fx Fy Fz Mx My Mz].

See also

tr2delta, tr2jac

xaxis
Set X-axis scaling

xaxis(max) set x-axis scaling from 0 to max.

xaxis(min, max) set x-axis scaling from min to max.

xaxis([min max]) as above.

xaxis restore automatic scaling for x-axis.

Robotics Toolbox 9.7 for MATLAB
R©

170 Copyright c©Peter Corke 2012

CHAPTER 2. FUNCTIONS AND CLASSES

xyzlabel
Label X, Y and Z axes

XYZLABEL label the x-, y- and z-axes with ‘X’, ‘Y’, and ‘Z’ respectiveley

yaxis
Y-axis scaling

yayis(max) yayis(min, max)

YAXIS restore automatic scaling for this axis

Robotics Toolbox 9.7 for MATLAB
R©

171 Copyright c©Peter Corke 2012

	Introduction
	Introduction
	What's changed
	Documentation
	Changed behaviour
	New functions
	Improvements

	How to obtain the Toolbox
	Documentation

	MATLAB version issues
	Use in teaching
	Use in research
	Support
	Related software
	Octave
	Python version
	Machine Vision toolbox

	Acknowledgements

	Functions and classes
	about
	angdiff
	angvec2r
	angvec2tr
	bresenham
	Bug2
	circle
	colnorm
	ctraj
	delta2tr
	DHFactor
	diff2
	distancexform
	Dstar
	DXform
	e2h
	EKF
	eul2jac
	eul2r
	eul2tr
	gauss2d
	h2e
	homline
	homtrans
	ishomog
	isrot
	isvec
	jtraj
	Link
	lspb
	Map
	mdl_Fanuc10L
	mdl_MotomanHP6
	mdl_puma560
	mdl_puma560akb
	mdl_quadcopter
	mdl_S4ABB2p8
	mdl_stanford
	mdl_twolink
	mstraj
	mtraj
	Navigation
	numcols
	numrows
	oa2r
	oa2tr
	ParticleFilter
	peak
	peak2
	PGraph
	plot2
	plot_arrow
	plot_box
	plot_circle
	plot_ellipse
	plot_homline
	plot_point
	plot_poly
	plot_sphere
	plot_vehicle
	plotbotopt
	plotp
	polydiff
	Polygon
	PRM
	qplot
	Quaternion
	r2t
	randinit
	RandomPath
	RangeBearingSensor
	rotx
	roty
	rotz
	rpy2jac
	rpy2r
	rpy2tr
	RRT
	rt2tr
	rtdemo
	se2
	Sensor
	SerialLink
	skew
	startup_rtb
	t2r
	tb_optparse
	tpoly
	tr2angvec
	tr2delta
	tr2eul
	tr2jac
	tr2rpy
	tr2rt
	tranimate
	transl
	trinterp
	trnorm
	trotx
	troty
	trotz
	trplot
	trplot2
	trprint
	unit
	Vehicle
	vex
	wtrans
	xaxis
	xyzlabel
	yaxis

