

Release 3.3
Release date October 2012

Licence LGPL
Toolbox home page http://www.petercorke.com/robot
Discussion group http://groups.google.com.au/group/robotics-tool-box

Copyright c©2012 Peter Corke
peter.i.corke@gmail.com
http://www.petercorke.com

http://www.petercorke.com/robot
http://groups.google.com.au/group/robotics-tool-box
http://www.petercorke.com

3

Preface

Peter C0rke

The practice of robotics and computer vision
each involve the application of computational algo-

rithms to data. The research community has devel-
oped a very large body of algorithms but for a
newcomer to the field this can be quite daunting.

For more than 10 years the author has maintained two open-
source matlab® Toolboxes, one for robotics and one for vision.
They provide implementations of many important algorithms and
allow users to work with real problems, not just trivial examples.

This new book makes the fundamental algorithms of robotics,
vision and control accessible to all. It weaves together theory, algo-
rithms and examples in a narrative that covers robotics and com-
puter vision separately and together. Using the latest versions
of the Toolboxes the author shows how complex problems can be
decomposed and solved using just a few simple lines of code.
The topics covered are guided by real problems observed by the
author over many years as a practitioner of both robotics and
computer vision. It is written in a light but informative style, it is
easy to read and absorb, and includes over 1000 matlab® and
Simulink® examples and figures. The book is a real walk through
the fundamentals of mobile robots, navigation, localization, arm-
robot kinematics, dynamics and joint level control, then camera
models, image processing, feature extraction and multi-view
geometry, and finally bringing it all together with an extensive
discussion of visual servo systems.

Peter Corke

Robotics,
 Vision
 and
 Control

Robotics, Vision and Control

isbn 978-3-642-20143-1

1

› springer.com
123

Corke

FUNDAMENTAL
ALGORITHMS
IN MATL AB®

783642 2014319

Robotics,
 Vision
 and
 Control

This, the third release of the Toolbox, represents a
decade of development. The last release was in 2005
and this version captures a large number of changes
over that period but with extensive work over the
last two years to support my new book “Robotics,
Vision & Control” shown to the left.

The Machine Vision Toolbox (MVTB) provides
many functions that are useful in machine vision
and vision-based control. It is a somewhat eclec-
tic collection reflecting my personal interest in areas
of photometry, photogrammetry, colorimetry. It in-
cludes over 100 functions spanning operations such
as image file reading and writing, acquisition, dis-
play, filtering, blob, point and line feature extrac-
tion, mathematical morphology, homographies, vi-

sual Jacobians, camera calibration and color space conversion. The Toolbox, combined
with MATLAB

R©
and a modern workstation computer, is a useful and convenient en-

vironment for investigation of machine vision algorithms. For modest image sizes the
processing rate can be sufficiently “real-time” to allow for closed-loop control. Fo-
cus of attention methods such as dynamic windowing (not provided) can be used to
increase the processing rate. With input from a firewire or web camera (support pro-
vided) and output to a robot (not provided) it would be possible to implement a visual
servo system entirely in MATLAB

R©
.

An image is usually treated as a rectangular array of scalar values representing inten-
sity or perhaps range. The matrix is the natural datatype for MATLAB

R©
and thus

makes the manipulation of images easily expressible in terms of arithmetic statements
in MATLAB

R©
language. Many image operations such as thresholding, filtering and

statistics can be achieved with existing MATLAB
R©

functions. The Toolbox extends
this core functionality with M-files that implement functions and classes, and mex-files
for some compute intensive operations. It is possible to use mex-files to interface with
image acquisition hardware ranging from simple framegrabbers to robots. Examples
for firewire cameras under Linux are provided.

The routines are written in a straightforward manner which allows for easy under-
standing. MATLAB

R©
vectorization has been used as much as possible to improve

efficiency, however some algorithms are not amenable to vectorization. If you have the

Machine Vision Toolbox for MATLAB
R©

4 Copyright c©Peter Corke 2011

MATLAB
R©

compiler available then this can be used to compile bottleneck functions.
Some particularly compute intensive functions are provided as mex-files and may need
to be compiled for the particular platform. This toolbox considers images generally
as arrays of double precision numbers. This is extravagant on storage, though this is
much less significant today than it was in the past.

This toolbox is not a clone of the Mathwork’s own Image Processing Toolbox (IPT)
although there are many functions in common. This toolbox predates IPT by many
years, is open-source, contains many functions that are useful for image feature extrac-
tion and control. It was developed under Unix and Linux systems and some functions
rely on tools and utilities that exist only in that environment.

The manual is now auto-generated from the comments in the MATLAB
R©

code itself
which reduces the effort in maintaining code and a separate manual as I used to — the
downside is that there are no worked examples and figures in the manual. However
the book “Robotics, Vision & Control” provides a detailed discussion (over 600 pages,
nearly 400 figures and 1000 code examples) of how to use the Toolbox functions to
solve many types of problems in robotics and machine vision, and I commend it to
you.

Machine Vision Toolbox for MATLAB
R©

5 Copyright c©Peter Corke 2011

Contents

Introduction . 4

1 Introduction 11
1.1 Support . 11
1.2 How to obtain the Toolbox . 11

1.2.1 Documentation . 12
1.3 MATLAB version issues . 13
1.4 Use in teaching . 13
1.5 Use in research . 13

1.5.1 Other toolboxes . 13
1.6 Acknowledgements . 14

2 Functions and classes 15
about . 15
anaglyph . 15
angdiff . 16
AxisWebCamera . 17
BagOfWords . 18
blackbody . 22
boundmatch . 23
bresenham . 23
camcald . 24
Camera . 24
CatadioptricCamera . 30
ccdresponse . 33
ccxyz . 34
CentralCamera . 34
cie primaries . 45
circle . 45
closest . 45
cmfrgb . 46
cmfxyz . 47
col2im . 47
colnorm . 48
colordistance . 48
colorize . 49
colorkmeans . 49
colorname . 50

Machine Vision Toolbox for MATLAB
R©

6 Copyright c©Peter Corke 2011

CONTENTS CONTENTS

colorseg . 51
colorspace . 51
diff2 . 53
distance . 53
e2h . 54
EarthView . 54
edgelist . 57
epidist . 58
epiline . 58
FeatureMatch . 59
filt1d . 64
FishEyeCamera . 64
fmatrix . 67
gauss2d . 68
gaussfunc . 68
h2e . 68
hist2d . 69
hitormiss . 70
homline . 70
homography . 70
homtrans . 71
homwarp . 72
Hough . 72
humoments . 76
ianimate . 76
ibbox . 77
iblobs . 78
icanny . 79
iclose . 80
icolor . 80
iconcat . 81
iconv . 82
icorner . 83
icp . 85
idecimate . 86
idilate . 86
idisp . 87
idisplabel . 89
idouble . 90
iendpoint . 90
ierode . 91
igamma . 92
igraphseg . 93
ihist . 94
iint . 95
iisum . 96
ilabel . 96
iline . 97
im2col . 98
ImageSource . 98

Machine Vision Toolbox for MATLAB
R©

7 Copyright c©Peter Corke 2011

CONTENTS CONTENTS

imatch . 99
imeshgrid . 101
imoments . 101
imono . 102
imorph . 103
imser . 104
inormhist . 105
intgimage . 105
invcamcal . 106
iopen . 106
ipad . 107
ipaste . 108
ipixswitch . 108
iprofile . 109
ipyramid . 110
irank . 110
iread . 111
irectify . 113
ireplicate . 113
iroi . 114
irotate . 114
isamesize . 115
iscale . 115
iscalemax . 116
iscalespace . 116
iscolor . 117
isift . 117
isimilarity . 119
isize . 120
ismooth . 121
isobel . 121
istereo . 122
istretch . 124
isurf . 124
ithin . 126
ithresh . 126
itrim . 127
itriplepoint . 128
ivar . 128
iwindow . 129
kcircle . 130
kdgauss . 131
kdog . 131
kgauss . 132
klaplace . 132
klog . 133
kmeans . 133
ksobel . 134
ktriangle . 134
lambda2rg . 135

Machine Vision Toolbox for MATLAB
R©

8 Copyright c©Peter Corke 2011

CONTENTS CONTENTS

lambda2xy . 135
LineFeature . 136
loadspectrum . 139
luminos . 139
mkcube . 140
mkgrid . 140
mlabel . 141
morphdemo . 141
Movie . 142
mplot . 143
mpq . 144
mpq poly . 144
mtools . 145
ncc . 145
niblack . 146
npq . 146
npq poly . 147
numcols . 147
numrows . 148
otsu . 148
peak . 149
peak2 . 150
PGraph . 150
plot2 . 164
plot arrow . 165
plot box . 165
plot circle . 165
plot ellipse . 166
plot ellipse inv . 166
plot homline . 166
plot point . 167
plot poly . 168
plot sphere . 168
plotp . 169
Plucker . 169
pnmfilt . 171
PointFeature . 172
polydiff . 175
Polygon . 175
radgrad . 180
randinit . 180
ransac . 181
Ray3D . 183
RegionFeature . 185
rg addticks . 189
rgb2xyz . 189
rluminos . 190
sad . 190
ScalePointFeature . 190
SiftPointFeature . 192

Machine Vision Toolbox for MATLAB
R©

9 Copyright c©Peter Corke 2011

CONTENTS CONTENTS

SphericalCamera . 195
ssd . 199
stdisp . 199
SurfPointFeature . 200
tb optparse . 203
testpattern . 204
Tracker . 205
tristim2cc . 207
upq . 207
upq poly . 208
VideoCamera . 208
VideoCamera fg . 209
VideoCamera IAT . 211
xaxis . 213
xycolorspace . 213
xyzlabel . 214
yaxis . 214
YUV . 214
zcross . 216
zncc . 217
zsad . 217
zssd . 218

Machine Vision Toolbox for MATLAB
R©

10 Copyright c©Peter Corke 2011

Chapter 1

Introduction

1.1 Support

There is no support! This software is made freely available in the hope that you find
it useful in solving whatever problems you have to hand. I am happy to correspond
with people who have found genuine bugs or deficiencies but my response time can
be long and I can’t guarantee that I respond to your email. I am very happy to accept
contributions for inclusion in future versions of the toolbox, and you will be suitably
acknowledged.

I can guarantee that I will not respond to any requests for help with assignments
or homework, no matter how urgent or important they might be to you. That’s
what your teachers, tutors, lecturers and professors are paid to do.

You might instead like to communicate with other users via the Google Group called
“Robotics Toolbox”

http://groups.google.com.au/group/robotics-tool-box

which is a forum for discussion. You need to signup in order to post, and the signup
process is moderated by me so allow a few days for this to happen. I need you to write a
few words about why you want to join the list so I can distinguish you from a spammer
or a web-bot.

1.2 How to obtain the Toolbox

The Machine Vision Toolbox is freely available from the Toolbox home page at

http://www.petercorke.com

The web page requests some information from you regarding such as your country,
type of organization and application. This is just a means for me to gauge interest and
to remind myself that this is a worthwhile activity.

Machine Vision Toolbox for MATLAB
R©

11 Copyright c©Peter Corke 2011

http://groups.google.com.au/group/robotics-tool-box
http://www.petercorke.com

1.2. HOW TO OBTAIN THE TOOLBOX CHAPTER 1. INTRODUCTION

The files are available in zip format (.zip). Download them all to the same directory
and then unzip them. They all unpack to the correct parts of a hiearchy of directories
(folders) headed by rvctools.

You may require one or more files, please read the descriptions carefully before down-
loading.

• vision-3.X.zip This file is essential, it is the core Toolbox and contains all
the functions, classes, mex-files and Simulink models required for most of the
RVC book.

• images.zip These are the images that are used for many examples in the RVC
book. These images are all found automatically by the iread() function.

• contrib.zip A small number of Toolbox functions depend on third party
code which is included in this file. Please note and respect the licence conditions
associated with these packages. Those functions are: igraphseg, imser, and
CentralCamera.estpose.

• contrib2.zip Additional third party code for the functions: isift, and
isurf. Note that the code here is slightly modified version of the open-source
packages.

• images2.zip This is a large file (150MB) containing the mosaic, campus,
bridge-l and campus sequences which support the examples in Sections 14.6,
14.7 and 14.8 respectively.

If you already have the Robotics Toolbox installed then download the zip file(s) to the
directory above the existing rvctools directory and then unzip them. The files from
these zip archives will properly interleave with the Robotics Toolbox files.

Ensure that the folder rvctools is on your MATLAB
R©

search path. You can do
this by issuing the addpath command at the MATLAB

R©
prompt. Then issue the

command startup rvc and it will add a number of paths to your MATLAB
R©

search
path. You need to setup the path every time you start MATLAB

R©
but you can automate

this by setting up environment variables, editing your startup.m script by pressing
the “Update Toolbox Path Cache” button under MATLAB

R©
General preferences.

1.2.1 Documentation

This document vision.pdf is a manual that describes all functions in the Toolbox. It
is auto-generated from the comments in the MATLAB

R©
code and is fully hyperlinked:

to external web sites, the table of content to functions, and the “See also” functions to
each other.

The same documentation is available online in alphabetical order at http://www.
petercorke.com/MVTB/r3/html/index_alpha.html or by category at http:
//www.petercorke.com/MVTB/r3/html/index.html.

Documentation is also available via the MATLAB
R©

help browser, “Machine Vision
Toolbox” appears under the Contents.

Machine Vision Toolbox for MATLAB
R©

12 Copyright c©Peter Corke 2011

http://www.petercorke.com/MVTB/r3/html/index_alpha.html
http://www.petercorke.com/MVTB/r3/html/index_alpha.html
http://www.petercorke.com/MVTB/r3/html/index.html
http://www.petercorke.com/MVTB/r3/html/index.html

1.3. MATLAB VERSION ISSUES CHAPTER 1. INTRODUCTION

1.3 MATLAB version issues

The Toolbox has been tested under R2012a.

1.4 Use in teaching

This is definitely encouraged! You are free to put the PDF manual (vision.pdf or
the web-based documentation html/*.html on a server for class use. If you plan to
distribute paper copies of the PDF manual then every copy must include the first two
pages (cover and licence).

1.5 Use in research

If the Toolbox helps you in your endeavours then I’d appreciate you citing the Toolbox
when you publish. The details are

@article{Corke05f,
Author = {P.I. Corke},
Journal = {IEEE Robotics and Automation Magazine},
Title = {Machine Vision Toolbox},
Month = nov,
Volume = {12},
Number = {4},
Year = {2005},
Pages = {16-25}

}

or

“Machine Vision Toolbox”,
P.I. Corke,
IEEE Robotics and Automation Magazine,
12(4), pp 16–25, November 2005.

which is also given in electronic form in the CITATION file.

1.5.1 Other toolboxes

Matlab Central http://www.mathworks.com/matlabcentral is a great re-
source for user contributed MATLAB code, and there are hundreds of modules avail-
able. VLFeat http://www.vlfeat.org is a great collection of advanced com-
puter vision algorithms for MATLAB.

Machine Vision Toolbox for MATLAB
R©

13 Copyright c©Peter Corke 2011

http://www.mathworks.com/matlabcentral
http://www.vlfeat.org

1.6. ACKNOWLEDGEMENTS CHAPTER 1. INTRODUCTION

1.6 Acknowledgements

Last, but not least, this release includes functions for computing image plane homo-
graphies and the fundamental matrix, contributed by Nuno Alexandre Cid Martins
of I.S.R., Coimbra. RANSAC code by Peter Kovesi; pose estimation by Francesco
Moreno-Noguer, Vincent Lepetit, Pascal Fua at the CVLab-EPFL; color space con-
versions by Pascal Getreuer; numerical routines for geometric vision by various mem-
bers of the Visual Geometry Group at Oxford (from the web site of the Hartley and
Zisserman book; the k-means and MSER algorithms by Andrea Vedaldi and Brian
Fulkerson;the graph-based image segmentation software by Pedro Felzenszwalb; and
the SURF feature detector by Dirk-Jan Kroon at U. Twente. The Camera Calibration
Toolbox by Jean-Yves Bouguet is used unmodified.Functions such as SURF, MSER,
graph-based segmentation and pose estimation are based on great code Some of the
MEX file use some really neat macros that were part of the package VISTA Copyright
1993, 1994 University of British Columbia. See the file CONTRIB for details.

Machine Vision Toolbox for MATLAB
R©

14 Copyright c©Peter Corke 2011

Chapter 2

Functions and classes

about
Compact display of variable type

about(x) displays a compact line that describes the class and dimensions of x.

about x as above but this is the command rather than functional form

See also

whos

anaglyph
Convert stereo images to an anaglyph image

a = anaglyph(left, right) is an anaglyph image where the two images of a stereo pair
are combined into a single image by coding them in two different colors. By default
the left image is red, and the right image is cyan.

anaglyph(left, right) as above but display the anaglyph.

a = anaglyph(left, right, color) as above but the string color describes the color coding
as a string with 2 letters, the first for left, the second for right, and each is one of:

Machine Vision Toolbox for MATLAB
R©

15 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

‘r’ red
‘g’ green
‘b’ green
‘c’ cyan
‘m’ magenta

a = anaglyph(left, right, color, disp) as above but allows for disparity correction. If
disp is positive the disparity is increased, if negative it is reduced. These adjustments
are achieved by trimming the images. Use this option to make the images more nat-
ural/comfortable to view, useful if the images were captured with a stereo baseline
significantly different the human eye separation (typically 65mm).

Example

Load the left and right images

L = iread(’rocks2-l.png’, ’reduce’, 2);
R = iread(’rocks2-r.png’, ’reduce’, 2);

then display the anaglyph for viewing with red-cyan glasses

anaglyph(L, R);

References

• Robotics, Vision & Control, Section 14.3, P. Corke, Springer 2011.

See also

stdisp

angdiff
Difference of two angles

d = angdiff(th1, th2) returns the difference between angles th1 and th2 on the circle.
The result is in the interval [-pi pi). If th1 is a column vector, and th2 a scalar then re-
turn a column vector where th2 is modulo subtracted from the corresponding elements
of th1.

d = angdiff(th) returns the equivalent angle to th in the interval [-pi pi).

Return the equivalent angle in the interval [-pi pi).

Machine Vision Toolbox for MATLAB
R©

16 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

AxisWebCamera
Image from Axis webcam

A concrete subclass of ImageSource that acquires images from a web camera built by
Axis Communications (www.axis.com).

Methods

grab Aquire and return the next image
size Size of image
close Close the image source
char Convert the object parameters to human readable string

See also

ImageSource, Video

AxisWebCamera.AxisWebCamera
Axis web camera constructor

a = AxisWebCamera(url, options) is an AxisWebCamera object that acquires im-
ages from an Axis Communications (www.axis.com) web camera.

Options

‘uint8’ Return image with uint8 pixels (default)
‘float’ Return image with float pixels
‘double’ Return image with double precision pixels
‘grey’ Return greyscale image
‘gamma’, G Apply gamma correction with gamma=G
‘scale’, S Subsample the image by S in both directions.
‘resolution’, S Obtain an image of size S=[W H].

Notes:

• The specified ‘resolution’ must match one that the camera is capable of, other-
wise the result is not predictable.

Machine Vision Toolbox for MATLAB
R©

17 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

AxisWebCamera.char
Convert to string

A.char() is a string representing the state of the camera object in human readable form.

See also

AxisWebCamera.display

AxisWebCamera.close
Close the image source

A.close() closes the connection to the web camera.

AxisWebCamera.grab
Acquire image from the camera

im = A.grab() is an image acquired from the web camera.

Notes

• Some web cameras have a fixed picture taking interval, and this function will
return the most recently captured image held in the camera.

BagOfWords
Bag of words class

The BagOfWords class holds sets of features for a number of images and supports
image retrieval by comparing new images with those in the ‘bag’.

Machine Vision Toolbox for MATLAB
R©

18 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

isword Return all features assigned to word
occurrences Return number of occurrences of word
remove stop Remove stop words
wordvector Return word frequency vector
wordfreq Return words and their frequencies
similarity Compare two word bags
contains List the images that contain a word
exemplars Display examples of word support regions
display Display the parameters of the bag of words
char Convert the parameters of the bag of words to a string

Properties

K The number of clusters specified
nstop The number of stop words specified
nimages The number of images in the bag

Reference

J.Sivic and A.Zisserman, “Video Google: a text retrieval approach to object matching
in videos”, in Proc. Ninth IEEE Int. Conf. on Computer Vision, pp.1470-1477, Oct.
2003.

See also

PointFeature

BagOfWords.BagOfWords
Create a BagOfWords object

b = BagOfWords(f, k) is a new bag of words created from the feature vector f and with
k words. f can also be a cell array, as produced by ISURF() for an image sequence.

The features are sorted into k clusters and each cluster is termed a visual word.

b = BagOfWords(f, b2) is a new bag of words created from the feature vector f but
clustered to the words (and stop words) from the existing bag b2.

Notes

• Uses the MEX function vl kmeans to perform clustering (vlfeat.org).

Machine Vision Toolbox for MATLAB
R©

19 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

PointFeature, isurf

BagOfWords.char
Convert to string

s = B.char() is a compact string representation of a bag of words.

BagOfWords.contains
Find images containing word

k = B.contains(w) is a vector of the indices of images in the sequence that contain one
or more instances of the word w.

BagOfWords.display
Display value

B.display() displays the parameters of the bag in a compact human readable form.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a BagOfWords object and the command has no trailing semicolon.

See also

BagOfWords.char

BagOfWords.exemplars
display exemplars of words

B.exemplars(w, images, options) displays examples of the support regions of the
words specified by the vector w. The examples are displayed as a table of thumb-

Machine Vision Toolbox for MATLAB
R©

20 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

nail images. The original sequence of images from which the features were extracted
must be provided as images.

Options

‘ncolumns’, N Number of columns to display (default 10)
‘maxperimage’, M Maximum number of exemplars to display from any one image (default 2)
‘width’, w Width of each thumbnail [pixels] (default 50)

BagOfWords.isword
Features from words

f = B.isword(w) is a vector of feature objects that are assigned to any of the word w. If
w is a vector of words the result is a vector of features assigned to all the words in w.

BagOfWords.occurrence
Word occurrence

n = B.occurrence(w) is the number of occurrences of the word w across all features in
the bag.

BagOfWords.remove stop
Remove stop words

B.remove stop(n) removes the n most frequent words (the stop words) from the bag.
All remaining words are renumbered so that the word labels are consecutive.

BagOfWords.wordfreq
Word frequency statistics

[w,n] = B.wordfreq() is a vector of word labels w and the corresponding elements of
n are the number of occurrences of that word.

Machine Vision Toolbox for MATLAB
R©

21 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

BagOfWords.wordvector
Word frequency vector

wf = B.wordvector(J) is the word frequency vector for the J’th image in the bag.
The vector is K × 1 and the angle between any two WFVs is an indication of image
similarity.

Notes

• The word vector is expensive to compute so a lazy evaluation is performed on
the first call to this function

blackbody
Compute blackbody emission spectrum

E = blackbody(lambda, T) is the blackbody radiation power density [W/m3] at the
wavelength lambda [m] and temperature T [K].

If lambda is a column vector (N×1), then E is a column vector (N×1) of blackbody
radiation power density at the corresponding elements of lambda.

Example

l = [380:10:700]’*1e-9; % visible spectrum
e = blackbody(l, 6500); % emission of sun
plot(l, e)

References

• Robotics, Vision & Control, Section 10.1, P. Corke, Springer 2011.

Machine Vision Toolbox for MATLAB
R©

22 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

boundmatch
Match boundary profiles

x = boundmatch(R1, r2) is the correlation of the two boundary profiles R1 and r2.
Each is an N × 1 vector of distances from the centroid of an object to points on its
perimeter at equal angular increments spanning 2pi radians. x is also N × 1 and is a
correlation whose peak indicates the relative orientation of one profile with respect to
the other.

[x,s] = boundmatch(R1, r2) as above but also returns the relative scale s which is the
size of object 2 with respect to object 1.

Notes

• Can be considered as matching two functions defined over s(1).

See also

RegionFeature.boundary, xcorr

bresenham
Generate a line

p = bresenham(x1, y1, x2, y2) is a list of integer coordinates for points lying on the
line segement (x1,y1) to (x2,y2). Endpoints must be integer.

p = bresenham(p1, p2) as above but p1=[x1,y1] and p2=[x2,y2].

See also

icanvas

Machine Vision Toolbox for MATLAB
R©

23 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

camcald
Camera calibration from data points

C = camcald(d) is the camera matrix (3 × 4) determined by least squares from corre-
sponding world and image-plane points. d is a table of points with rows of the form
[X Y Z U V] where (X,Y,Z) is the coordinate of a world point and [U,V] is the corre-
sponding image plane coordinate.

[C,E] = camcald(d) as above but E is the maximum residual error after back substitu-
tion [pixels].

Notes:

• This method assumes no lense distortion affecting the image plane coordinates.

See also

CentralCamera

Camera
Camera superclass

An abstract superclass for Toolbox camera classes.

Methods

plot plot projection of world point to image plane
hold control figure hold for image plane window
ishold test figure hold for image plane
clf clear image plane
figure figure holding the image plane
mesh draw shape represented as a mesh
point draw homogeneous points on image plane
line draw homogeneous lines on image plane
plot camera draw camera in world view

rpy set camera attitude
move clone Camera after motion
centre get world coordinate of camera centre

delete object destructor
char convert camera parameters to string
display display camera parameters

Machine Vision Toolbox for MATLAB
R©

24 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Properties (read/write)

npix image dimensions (2× 1)
pp principal point (2× 1)
rho pixel dimensions (2× 1) in metres
T camera pose as homogeneous transformation

Properties (read only)

nu number of pixels in u-direction
nv number of pixels in v-direction
u0 principal point u-coordinate
v0 principal point v-coordinate

Notes

• Camera is a reference object.

• Camera objects can be used in vectors and arrays

• This is an abstract class and must be subclassed and a project() method defined.

• The object can create a window to display the Camera image plane, this window
is protected and can only be accessed by the plot methods of this object.

Camera.Camera
Create camera object

Constructor for abstact Camera class, used by all subclasses.

C = Camera(options) creates a default (abstract) camera with null parameters.

Options

‘name’, N Name of camera
‘image’, IM Load image IM to image plane
‘resolution’, N Image plane resolution: N ×N or N=[W H]
‘sensor’, S Image sensor size in metres (2× 1) [metres]
‘centre’, P Principal point (2× 1)
‘pixel’, S Pixel size: S × S or S=[W H]
‘noise’, SIGMA Standard deviation of additive Gaussian noise added to returned image projections
‘pose’, T Pose of the camera as a homogeneous transformation
‘color’, C Color of image plane background (default [1 1 0.8])

Machine Vision Toolbox for MATLAB
R©

25 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Normally the class plots points and lines into a set of axes that represent the
image plane. The ‘image’ option paints the specified image onto the image plane
and allows points and lines to be overlaid.

See also

CentralCamera, fisheyecamera, CatadioptricCamera, SphericalCamera

Camera.centre
Get camera position

p = C.centre() is the 3-dimensional position of the camera centre (3× 1).

Camera.char
Convert to string

s = C.char() is a compact string representation of the camera parameters.

Camera.clf
Clear the image plane

C.clf() removes all graphics from the camera’s image plane.

Camera.delete
Camera object destructor

C.delete() destroys all figures associated with the Camera object and removes the
object.

Machine Vision Toolbox for MATLAB
R©

26 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Camera.display
Display value

C.display() displays a compact human-readable representation of the camera parame-
ters.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a Camera object and the command has no trailing semicolon.

See also

Camera.char

Camera.figure
Return figure handle

H = C.figure() is the handle of the figure that contains the camera’s image plane graph-
ics.

Camera.hold
Control hold on image plane graphics

C.hold() sets “hold on” for the camera’s image plane.

C.hold(H) hold mode is set on if H is true (or > 0), and off if H is false (or 0).

Camera.homline
Plot homogeneous lines on image plane

C.line(L) plots lines on the camera image plane which are defined by columns of L
(3×N) considered as lines in homogeneous form: a.u + b.v + c = 0.

Machine Vision Toolbox for MATLAB
R©

27 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Camera.ishold
Return image plane hold status

H = C.ishold() returns true (1) if the camera’s image plane is in hold mode, otherwise
false (0).

Camera.lineseg
handle for this camera image plane

Camera.mesh
Plot mesh object on image plane

C.mesh(x, y, z, options) projects a 3D shape defined by the matrices x, y, z to the image
plane and plots them. The matrices x, y, z are of the same size and the corresponding
elements of the matrices define 3D points.

Options

‘Tobj’, T Transform all points by the homogeneous transformation T before projecting them to
the camera image plane.

‘Tcam’, T Set the camera pose to the homogeneous transformation T before projecting points to
the camera image plane. Temporarily overrides the current camera pose C.T.

Additional arguments are passed to plot as line style parameters.

See also

mesh, cylinder, sphere, mkcube, Camera.plot, Camera.hold, Camera.clf

Camera.move
Instantiate displaced camera

C2 = C.move(T) is a new camera object that is a clone of C but its pose is displaced
by the homogeneous transformation T with respect to the current pose of C.

Machine Vision Toolbox for MATLAB
R©

28 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Camera.plot
Plot points on image plane

C.plot(p, options) projects world points p (3×N) to the image plane and plots them.
If p is 2 × N the points are assumed to be image plane coordinates and are plotted
directly.

uv = C.plot(p) as above but returns the image plane coordinates uv (2×N).

• If p has 3 dimensions (3×N × S) then it is considered a sequence of point sets
and is displayed as an animation.

C.plot(L, options) projects the world lines represented by the array of Plucker objects
(1×N) to the image plane and plots them.

li = C.plot(L, options) as above but returns an array (3 × N) of image plane lines in
homogeneous form.

Options

‘Tobj’, T Transform all points by the homogeneous transformation T before projecting them to
the camera image plane.

‘Tcam’, T Set the camera pose to the homogeneous transformation T before projecting points to
the camera image plane. Overrides the current camera pose C.T.

‘fps’, N Number of frames per second for point sequence display
‘sequence’ Annotate the points with their index
‘textcolor’, C Text color for annotation (default black)
‘textsize’, S Text size for annotation (default 12)
‘drawnow’ Execute MATLAB drawnow function

Additional options are considered MATLAB linestyle parameters and are passed di-
rectly to plot.

See also

Camera.mesh, Camera.hold, Camera.clf, plucker

Camera.plot camera
Display camera icon in world view

C.plot camera(options) draw a camera as a simple 3D model in the current figure.

Machine Vision Toolbox for MATLAB
R©

29 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘Tcam’, T Camera displayed in pose T (homogeneous transformation 4× 4)
‘scale’, S Overall scale factor (default 0.2 x maximum axis dimension)
‘color’, C Camera body color (default blue)
‘frustrum’ Draw the camera as a frustrum (pyramid mesh)
‘solid’ Draw a non-frustrum camera as a solid (default)
‘mesh’ Draw a non-frustrum camera as a mesh
‘label’ Show the camera’s name next to the camera

Notes

• The graphic handles are stored within the Camera object.

Camera.point
Plot homogeneous points on image plane

C.point(p) plots points on the camera image plane which are defined by columns of p
(3×N) considered as points in homogeneous form.

Camera.rpy
Set camera attitude

C.rpy(R, p, y) sets the camera attitude to the specified roll-pitch-yaw angles.

C.rpy(rpy) as above but rpy=[R,p,y].

CatadioptricCamera
Catadioptric camera class

A concrete class for a catadioptric camera, subclass of Camera.

Machine Vision Toolbox for MATLAB
R©

30 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

project project world points to image plane

plot plot/return world point on image plane
hold control hold for image plane
ishold test figure hold for image plane
clf clear image plane
figure figure holding the image plane
mesh draw shape represented as a mesh
point draw homogeneous points on image plane
line draw homogeneous lines on image plane
plot camera draw camera

rpy set camera attitude
move copy of Camera after motion
centre get world coordinate of camera centre

delete object destructor
char convert camera parameters to string
display display camera parameters

Properties (read/write)

npix image dimensions in pixels (2× 1)
pp intrinsic: principal point (2× 1)
rho intrinsic: pixel dimensions (2× 1) [metres]
f intrinsic: focal length [metres]
p intrinsic: tangential distortion parameters
T extrinsic: camera pose as homogeneous transformation

Properties (read only)

nu number of pixels in u-direction
nv number of pixels in v-direction
u0 principal point u-coordinate
v0 principal point v-coordinate

Notes

• Camera is a reference object.

• Camera objects can be used in vectors and arrays

See also

CentralCamera, Camera

Machine Vision Toolbox for MATLAB
R©

31 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

CatadioptricCamera.CatadioptricCamera
Create central projection camera object

C = CatadioptricCamera() creates a central projection camera with canonic parame-
ters: f=1 and name=’canonic’.

C = CatadioptricCamera(options) as above but with specified parameters.

Options

‘name’, N Name of camera
‘focal’, F Focal length (metres)
‘default’ Default camera parameters: 1024 × 1024, f=8mm, 10um pixels, camera at origin,

optical axis is z-axis, u- and v-axes parallel to x- and y-axes respectively.
‘projection’, M Catadioptric model: ‘equiangular’ (default), ‘sine’, ‘equisolid’, ‘stereographic’
‘k’, K Parameter for the projection model
‘maxangle’, A The maximum viewing angle above the horizontal plane.
‘resolution’, N Image plane resolution: N ×N or N=[W H].
‘sensor’, S Image sensor size in metres (2× 1)
‘centre’, P Principal point (2× 1)
‘pixel’, S Pixel size: S × S or S=[W H].
‘noise’, SIGMA Standard deviation of additive Gaussian noise added to returned image projections
‘pose’, T Pose of the camera as a homogeneous transformation

Notes

• The elevation angle range is from -pi/2 (below the mirror) to maxangle above the
horizontal plane.

See also

Camera, fisheyecamera, CatadioptricCamera, SphericalCamera

CatadioptricCamera.project
Project world points to image plane

uv = C.project(p, options) are the image plane coordinates for the world points p.
The columns of p (3×N) are the world points and the columns of uv (2×N) are the
corresponding image plane points.

Machine Vision Toolbox for MATLAB
R©

32 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘Tobj’, T Transform all points by the homogeneous transformation T before projecting them to
the camera image plane.

‘Tcam’, T Set the camera pose to the homogeneous transformation T before projecting points to
the camera image plane. Temporarily overrides the current camera pose C.T.

See also

Camera.plot

ccdresponse
CCD spectral response

R = ccdresponse(lambda) is the spectral response of a typical silicon imaging sen-
sor at the wavelength lambda [m]. The response is normalized in the range 0 to 1.
If lambda is a vector then R is a vector of the same length whose elements are the
response at the corresponding element of lambda.

Notes

• Deprecated, use loadspectrum(lambda, ‘ccd’) instead.

References

• An ancient Fairchild data book for a silicon sensor.

• Robotics, Vision & Control, Section 10.2, P. Corke, Springer 2011.

See also

rluminos

Machine Vision Toolbox for MATLAB
R©

33 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

ccxyz
XYZ chromaticity coordinates

xyz = ccxyz(lambda) is the xyz-chromaticity coordinates (3 × 1) for illumination at
wavelength lambda. If lambda is a vector (N × 1) then each row of xyz (N × 3) is
the xyz-chromaticity of the corresponding element of lambda.

xyz = ccxyz(lambda, E) is the xyz-chromaticity coordinates (N×3) for an illumination
spectrum E (N × 1) defined at corresponding wavelengths lambda (N × 1).

References

• Robotics, Vision & Control, Section 10.2, P. Corke, Springer 2011.

See also

cmfxyz

CentralCamera
Perspective camera class

A concrete class for a central-projection perspective camera, a subclass of Camera.

The camera coordinate system is:

0------------> u X
|
|
| + (principal point)
|
| Z-axis is into the page.
v Y

This camera model assumes central projection, that is, the focal point is at z=0 and the
image plane is at z=f. The image is not inverted.

Machine Vision Toolbox for MATLAB
R©

34 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

project project world points and lines
K camera intrinsic matrix
C camera matrix
H camera motion to homography
invH decompose homography
F camera motion to fundamental matrix
E camera motion to essential matrix
invE decompose essential matrix
fov field of view
ray Ray3D corresponding to point
centre projective centre

plot plot projection of world point on image plane
hold control hold for image plane
ishold test figure hold for image plane
clf clear image plane
figure figure holding the image plane
mesh draw shape represented as a mesh
point draw homogeneous points on image plane
line draw homogeneous lines on image plane
plot camera draw camera in world view
plot line tr draw line in theta/rho format
plot epiline draw epipolar line

flowfield compute optical flow
visjac p image Jacobian for point features
visjac p polar image Jacobian for point features in polar coordinates
visjac l image Jacobian for line features
visjac e image Jacobian for ellipse features

rpy set camera attitude
move clone Camera after motion
centre get world coordinate of camera centre
estpose estimate pose

delete object destructor
char convert camera parameters to string
display display camera parameters

Properties (read/write)

npix image dimensions in pixels (2× 1)
pp intrinsic: principal point (2× 1)
rho intrinsic: pixel dimensions (2× 1) in metres
f intrinsic: focal length
k intrinsic: radial distortion vector
p intrinsic: tangential distortion parameters
distortion intrinsic: camera distortion [k1 k2 k3 p1 p2]
T extrinsic: camera pose as homogeneous transformation

Machine Vision Toolbox for MATLAB
R©

35 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Properties (read only)

nu number of pixels in u-direction
nv number of pixels in v-direction
u0 principal point u-coordinate
v0 principal point v-coordinate

Notes

• Camera is a reference object.

• Camera objects can be used in vectors and arrays

See also

Camera

CentralCamera.CentralCamera
Create central projection camera object

C = CentralCamera() creates a central projection camera with canonic parameters:
f=1 and name=’canonic’.

C = CentralCamera(options) as above but with specified parameters.

Options

‘name’, N Name of camera
‘focal’, F Focal length [metres]
‘distortion’, D Distortion vector [k1 k2 k3 p1 p2]
‘distortion-bouguet’, D Distortion vector [k1 k2 p1 p2 k3]
‘default’ Default camera parameters: 1024 × 1024, f=8mm, 10um pixels, camera at origin,

optical axis is z-axis, u- and v-axes parallel to x- and y-axes respectively.
‘image’, IM Display an image rather than points
‘resolution’, N Image plane resolution: N ×N or N=[W H]
‘sensor’, S Image sensor size in metres (2× 1)
‘centre’, P Principal point (2× 1)
‘pixel’, S Pixel size: S × S or S=[W H]
‘noise’, SIGMA Standard deviation of additive Gaussian noise added to returned image projections
‘pose’, T Pose of the camera as a homogeneous transformation
‘color’, C Color of image plane background (default [1 1 0.8])

Machine Vision Toolbox for MATLAB
R©

36 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Camera, fisheyecamera, CatadioptricCamera, SphericalCamera

CentralCamera.C
Camera matrix

C = C.C() is the 3×4 camera matrix, also known as the camera calibration or projection
matrix.

CentralCamera.centre
Projective centre

p = C.centre() returns the 3D world coordinate of the projective centre of the camera.

Reference

Hartley & Zisserman, “Multiview Geometry”,

See also

Ray3D

CentralCamera.E
Essential matrix

E = C.E(T) is the essential matrix relating two camera views. The first view is from
the current camera pose C.T and the second is a relative motion represented by the
homogeneous transformation T.

E = C.E(C2) is the essential matrix relating two camera views described by camera
objects C (first view) and C2 (second view).

E = C.E(f) is the essential matrix based on the fundamental matrix f (3 × 3) and the
intrinsic parameters of camera C.

Machine Vision Toolbox for MATLAB
R©

37 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Reference

Y.Ma, J.Kosecka, S.Soatto, S.Sastry, “An invitation to 3D”, Springer, 2003. p.177

See also

CentralCamera.F, CentralCamera.invE

CentralCamera.estpose
Estimate pose from object model and camera view

T = C.estpose(xyz, uv) is an estimate of the pose of the object defined by coordinates
xyz (3×N) in its own coordinate frame. uv (2×N) are the corresponding image plane
coordinates.

Reference

“EPnP: An accurate O(n) solution to the PnP problem”, V. Lepetit, F. Moreno-Noguer,
and P. Fua, Int. Journal on Computer Vision, vol. 81, pp. 155-166, Feb. 2009.

CentralCamera.F
Fundamental matrix

F = C.F(T) is the fundamental matrix relating two camera views. The first view is
from the current camera pose C.T and the second is a relative motion represented by
the homogeneous transformation T.

F = C.F(C2) is the fundamental matrix relating two camera views described by camera
objects C (first view) and C2 (second view).

Reference

Y.Ma, J.Kosecka, S.Soatto, S.Sastry, “An invitation to 3D”, Springer, 2003. p.177

See also

CentralCamera.E

Machine Vision Toolbox for MATLAB
R©

38 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

CentralCamera.flowfield
Optical flow

C.flowfield(v) displays the optical flow pattern for a sparse grid of points when the
camera has a spatial velocity v (6× 1).

See also

quiver

CentralCamera.fov
Camera field-of-view angles.

a = C.fov() are the field of view angles (2 × 1) in radians for the camera x and y
(horizontal and vertical) directions.

CentralCamera.H
Homography matrix

H = C.H(T, n, d) is a 3 × 3 homography matrix for the camera observing the plane
with normal n and at distance d, from two viewpoints. The first view is from the
current camera pose C.T and the second is after a relative motion represented by the
homogeneous transformation T.

See also

CentralCamera.H

CentralCamera.invE
Decompose essential matrix

s = C.invE(E) decomposes the essential matrix E (3 × 3) into the camera motion.
In practice there are multiple solutions and s (4 × 4 × N) is a set of homogeneous
transformations representing possible camera motion.

Machine Vision Toolbox for MATLAB
R©

39 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

s = C.invE(E, p) as above but only solutions in which the world point p is visible are
returned.

Reference

Hartley & Zisserman, “Multiview Geometry”, Chap 9, p. 259

Y.Ma, J.Kosecka, s.Soatto, s.Sastry, “An invitation to 3D”, Springer, 2003. p116, p120-
122

Notes

• The transformation is from view 1 to view 2.

See also

CentralCamera.E

CentralCamera.invH
Decompose homography matrix

s = C.invH(H) decomposes the homography H (3× 3) into the camera motion and the
normal to the plane.

In practice there are multiple solutions and s is a vector of structures with elements:

• T, camera motion as a homogeneous transform matrix (4× 4), translation not to
scale

• n, normal vector to the plane (3× 3)

Notes

• There are up to 4 solutions

• Only those solutions that obey the positive depth constraint are returned

• The required camera intrinsics are taken from the camera object

• The transformation is from view 1 to view 2.

Reference

Y.Ma, J.Kosecka, s.Soatto, s.Sastry, “An invitation to 3D”, Springer, 2003. section 5.3

Machine Vision Toolbox for MATLAB
R©

40 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

CentralCamera.H

CentralCamera.K
Intrinsic parameter matrix

K = C.K() is the 3× 3 intrinsic parameter matrix.

CentralCamera.plot epiline
Plot epipolar line

C.plot epiline(f, p) plots the epipolar lines due to the fundamental matrix f and the
image points p.

C.plot epiline(f, p, ls) as above but draw lines using the line style arguments ls.

H = C.plot epiline(f, p) as above but return a vector of graphic handles, one per line.

CentralCamera.plot line tr
Plot line in theta-rho format

CentralCamera.plot line tr(L) plots lines on the camera’s image plane that are de-
scribed by columns of L with rows theta and rho respectively.

See also

Hough

CentralCamera.project
Project world points to image plane

uv = C.project(p, options) are the image plane coordinates (2×N) corresponding to
the world points p (3×N).

Machine Vision Toolbox for MATLAB
R©

41 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

• If Tcam (4× 4× S) is a transform sequence then uv (2×N × S) represents the
sequence of projected points as the camera moves in the world.

• If Tobj (4× 4× S) is a transform sequence then uv (2×N × S) represents the
sequence of projected points as the object moves in the world.

L = C.project(L, options) are the image plane homogeneous lines (3×N) correspond-
ing to the world lines represented by a vector of Plucker coordinates (1×N).

Options

‘Tobj’, T Transform all points by the homogeneous transformation T before projecting them to
the camera image plane.

‘Tcam’, T Set the camera pose to the homogeneous transformation T before projecting points to
the camera image plane. Temporarily overrides the current camera pose C.T.

Notes

• Currently a camera or object pose sequence is not supported for the case of line
projection.

See also

Camera.plot, plucker

CentralCamera.ray
3D ray for image point

R = C.ray(p) returns a vector of Ray3D objects, one for each point defined by the
columns of p.

Reference

Hartley & Zisserman, “Multiview Geometry”, p 162

See also

Ray3D

Machine Vision Toolbox for MATLAB
R©

42 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

CentralCamera.visjac e
Visual motion Jacobian for point feature

J = C.visjac e(E, pl) is the image Jacobian (5× 6) for the ellipse E (5× 1) described
by u2 + E1v2 - 2E2uv + 2E3u + 2E4v + E5 = 0. The ellipse lies in the world plane pl
= (a,b,c,d) such that aX + bY + cZ + d = 0.

The Jacobian gives the rates of change of the ellipse parameters in terms of camera
spatial velocity.

Reference

B. Espiau, F. Chaumette, and P. Rives, “A New Approach to Visual Servoing in Robotics”,
IEEE Transactions on Robotics and Automation, vol. 8, pp. 313-326, June 1992.

See also

CentralCamera.visjac p, CentralCamera.visjac p polar, CentralCamera.visjac l

CentralCamera.visjac l
Visual motion Jacobian for line feature

J = C.visjac l(L, pl) is the image Jacobian (2N × 6) for the image plane lines L (2×
N). Each column of L is a line in theta-rho format, and the rows are theta and rho
respectively.

The lines all lie in the plane pl = (a,b,c,d) such that aX + bY + cZ + d = 0.

The Jacobian gives the rates of change of the line parameters in terms of camera spatial
velocity.

Reference

B. Espiau, F. Chaumette, and P. Rives, “A New Approach to Visual Servoing in Robotics”,
IEEE Transactions on Robotics and Automation, vol. 8, pp. 313-326, June 1992.

See also

CentralCamera.visjac p, CentralCamera.visjac p polar, CentralCamera.visjac e

Machine Vision Toolbox for MATLAB
R©

43 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

CentralCamera.visjac p
Visual motion Jacobian for point feature

J = C.visjac p(uv, z) is the image Jacobian (2N × 6) for the image plane points uv
(2×N). The depth of the points from the camera is given by z which is a scalar for all
points, or a vector (N × 1) of depth for each point.

The Jacobian gives the image-plane point velocity in terms of camera spatial velocity.

Reference

“A tutorial on Visual Servo Control”, Hutchinson, Hager & Corke, IEEE Trans. R&A,
Vol 12(5), Oct, 1996, pp 651-670.

See also

CentralCamera.visjac p polar, CentralCamera.visjac l, CentralCamera.visjac e

CentralCamera.visjac p polar
Visual motion Jacobian for point feature

J = C.visjac p polar(rt, z) is the image Jacobian (2N × 6) for the image plane points
rt (2×N) described in polar form, radius and theta. The depth of the points from the
camera is given by z which is a scalar for all point, or a vector (N × 1) of depths for
each point.

The Jacobian gives the image-plane polar point coordinate velocity in terms of camera
spatial velocity.

Reference

“Combining Cartesian and polar coordinates in IBVS”, P. I. Corke, F. Spindler, and F.
Chaumette, in Proc. Int. Conf on Intelligent Robots and Systems (IROS), (St. Louis),
pp. 5962-5967, Oct. 2009.

See also

CentralCamera.visjac p, CentralCamera.visjac l, CentralCamera.visjac e

Machine Vision Toolbox for MATLAB
R©

44 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

cie primaries
Define CIE primary colors

p = cie primaries() is a 3-vector with the wavelengths [m] of the CIE 1976 red, green
and blue primaries respectively.

circle
Compute points on a circle

circle(C, R, opt) plot a circle centred at C with radius R.

x = circle(C, R, opt) return an N × 2 matrix whose rows define the coordinates [x,y]
of points around the circumferance of a circle centred at C and of radius R.

C is normally 2× 1 but if 3× 1 then the circle is embedded in 3D, and x is N × 3, but
the circle is always in the xy-plane with a z-coordinate of C(3).

Options

‘n’, N Specify the number of points (default 50)

closest
Find closest points in N-dimensional space.

k = closest(a, b) is the correspondence for N-dimensional point sets a (N ×NA) and
b (N ×NB). k (1 x NA) is such that the element J = k(I), that is, that the I’th column
of a is closest to the Jth column of b.

[k,d1] = closest(a, b) as above and d1(I)=—a(I)-b(J)— is the distance of the closest
point.

[k,d1,d2] = closest(a, b) as above but also returns the distance to the second closest
point.

Notes

• Is a MEX file.

Machine Vision Toolbox for MATLAB
R©

45 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

distance

cmfrgb
RGB color matching function

The color matching function is the RGB tristimulus required to match a particular
spectral excitation.

rgb = cmfrgb(lambda) is the CIE color matching function (N × 3) for illumination
at wavelength lambda (N × 1) [m]. If lambda is a vector then each row of rgb is the
color matching function of the corresponding element of lambda.

rgb = cmfrgb(lambda, E) is the CIE color matching (1×3) function for an illumination
spectrum E (N × 1) defined at corresponding wavelengths lambda (N × 1).

Notes

• Data from http://cvrl.ioo.ucl.ac.uk

• From Table I(5.5.3) of Wyszecki & Stiles (1982). (Table 1(5.5.3) of Wyszecki &
Stiles (1982) gives the Stiles & Burch functions in 250 cm-1 steps, while Table
I(5.5.3) of Wyszecki & Stiles (1982) gives them in interpolated 1 nm steps.)

• The Stiles & Burch 2-deg CMFs are based on measurements made on 10 ob-
servers. The data are referred to as pilot data, but probably represent the best
estimate of the 2 deg CMFs, since, unlike the CIE 2 deg functions (which were
reconstructed from chromaticity data), they were measured directly.

• These CMFs differ slightly from those of Stiles & Burch (1955). As noted in
footnote a on p. 335 of Table 1(5.5.3) of Wyszecki & Stiles (1982), the CMFs
have been ”corrected in accordance with instructions given by Stiles & Burch
(1959)” and renormalized to primaries at 15500 (645.16), 19000 (526.32), and
22500 (444.44) cm-1

References

• Robotics, Vision & Control, Section 10.2, P. Corke, Springer 2011.

See also

cmfxyz, ccxyz

Machine Vision Toolbox for MATLAB
R©

46 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

cmfxyz
matching function

The color matching function is the XYZ tristimulus required to match a particular
wavelength excitation.

xyz = cmfxyz(lambda) is the CIE xyz color matching function (N×3) for illumination
at wavelength lambda (N × 1) [m]. If lambda is a vector then each row of xyz is the
color matching function of the corresponding element of lambda.

xyz = cmfxyz(lambda, E) is the CIE xyz color matching (1 × 3) function for an illu-
mination spectrum E (N × 1) defined at corresponding wavelengths lambda (N × 1).

Note

• CIE 1931 2-deg xyz CMFs from cvrl.ioo.ucl.ac.uk

References

• Robotics, Vision & Control, Section 14.3, P. Corke, Springer 2011.

See also

cmfrgb, ccxyz

col2im
Convert pixel vector to image

out = col2im(pix, imsize) is an image (H × W × P) comprising the pixel values in
pix (N × P) with one row per pixel where N=H ×W . imsize is a 2-vector (N,M).

out = col2im(pix, im) as above but the dimensions of out are the same as im.

Notes

• The number of rows in pix must match the product of the elements of imsize.

Machine Vision Toolbox for MATLAB
R©

47 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

im2col

colnorm
Column-wise norm of a matrix

cn = colnorm(a) is an M × 1 vector of the normals of each column of the matrix a
which is N ×M .

colordistance
Colorspace distance

d = colordistance(im, rg) is the Euclidean distance on the rg-chromaticity plane from
coordinate rg=[r,g] to every pixel in the color image im. d is an image with the same
dimensions as im and the value of each pixel is the color space distance of the corre-
sponding pixel in im.

Notes

• The output image could be thresholded to determine color similarity.

• Note that Euclidean distance in the rg-chromaticity space does not correspond
well with human perception of color differences. Perceptually uniform spaces
such as Lab remedy this problem.

See also

colorspace

Machine Vision Toolbox for MATLAB
R©

48 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

colorize
Colorize a greyscale image

out = colorize(im, mask, color) is a color image where each pixel in out is set to
the corresponding element of the greyscale image im or a specified color according
to whether the corresponding value of mask is true or false respectively. The color is
specified as a 3-vector (R,G,B).

out = colorize(im, func, color) as above but a the mask is the return value of the
function handle func applied to the image im, and returns a per-pixel logical result, eg.
@isnan.

Examples

Display image with values < 100 in blue

out = colorize(im, im<100, [0 0 1])

Display image with NaN values shown in red

out = colorize(im, @isnan, [1 0 0])

Notes

• With no output arguments the image is displayed.

See also

imono, icolor, ipixswitch

colorkmeans
Color image segmentation by clustering

L = colorkmeans(im, k, options) is a segmentation of the color image im into k
classes. The label image L has the same row and column dimension as im and each
pixel has a value in the range 0 to k-1 which indicates which cluster the correspond-
ing pixel belongs to. A k-means clustering of the chromaticity of all input pixels is
performed.

[L,C] = colorkmeans(im, k) as above but also returns the cluster centres C (k × 2)
where the I’th row is the rg-chromaticity of the I’th cluster and corresponds to the label
I. A k-means clustering of the chromaticity of all input pixels is performed.

Machine Vision Toolbox for MATLAB
R©

49 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

[L,C,R] = colorkmeans(im, k) as above but also returns the residual R, the root mean
square error of all pixel chromaticities with respect to their cluster centre.

L = colorkmeans(im, C) is a segmentation of the color image im into k classes which
are defined by the cluster centres C (k × 2) in chromaticity space. Pixels are assigned
to the closest (Euclidean) centre. Since cluster centres are provided the k-means seg-
mentation step is not required.

Options

Various options are possible to choose the initial cluster centres for k-means:

‘random’ randomly choose k points from
‘spread’ randomly choose k values within the rectangle spanned by the input chromaticities.
‘pick’ interactively pick cluster centres

Notes

• The k-means clustering algorithm used in the first three forms is computationally
expensive and time consuming.

• Clustering is performed in xy-chromaticity space.

• The residual is an indication of quality of fit, low is good.

See also

rgb2xyz, kmeans

colorname
Map between color names and RGB values

rgb = colorname(name) is the rgb-tristimulus value corresponding to the color speci-
fied by the string name.

name = colorname(rgb) is a string giving the name of the color that is closest (Eu-
clidean) to the given rgb-tristimulus value.

XYZ = colorname(name, ‘xy’) is the XYZ-tristimulus value corresponding to the
color specified by the string name.

name = colorname(XYZ, ‘xy’) is a string giving the name of the color that is closest
(Euclidean) to the given XYZ-tristimulus value.

Machine Vision Toolbox for MATLAB
R©

50 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Color name may contain a wildcard, eg. “?burnt”

• Based on the standard X11 color database rgb.txt.

• Tristimulus values are in the range 0 to 1

colorseg
Color image segmentation using k-means

THIS FUNCTION IS DEPRECATED, USE COLORKMEANS INSTEAD

Notes

• deprecated. Use COLORKMEANS instead.

See also

colorkmeans

colorspace
Color space conversion of image

out = colorspace(s, im) converts the image im to a different color space according to
the string s which specifies the source and destination color spaces, s = ‘dest<-src’, or
alternatively, s = ‘src->dest’. Input and output images have 3 planes.

[o1,o2,o3] = colorspace(s, im) as above but specifies separate output channels or
planes.

colorspace(s, i1,i2,i3) as above but specifies separate input channels.

Supported color spaces are:

Machine Vision Toolbox for MATLAB
R©

51 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

‘RGB’ R’G’B’ Red Green Blue (ITU-R BT.709 gamma-corrected)
‘YPbPr’ Luma (ITU-R BT.601) + Chroma
‘YCbCr’/’YCC’ Luma + Chroma (“digitized” version of Y’PbPr)
‘YUV’ NTSC PAL Y’UV Luma + Chroma
‘YIQ’ NTSC Y’IQ Luma + Chroma
‘YDbDr’ SECAM Y’DbDr Luma + Chroma
‘JPEGYCbCr’ JPEG-Y’CbCr Luma + Chroma
‘HSV’/’HSB’ Hue Saturation Value/Brightness
‘HSL’/’HLS’/’HSI’ Hue Saturation Luminance/Intensity
‘XYZ’ CIE XYZ
‘Lab’ CIE L*a*b* (CIELAB)
‘Luv’ CIE L*u*v* (CIELUV)
‘Lch’ CIE L*ch (CIELCH)

Notes

• RGB input is assumed to be gamma encoded

• RGB output is gamma encoded

• All conversions assume 2 degree observer and D65 illuminant.

• Color space names are case insensitive.

• When R’G’B’ is the source or destination, it can be omitted. For example ‘yuv<-
’ is short for ‘yuv<-rgb’.

• MATLAB uses two standard data formats for R’G’B’: double data with inten-
sities in the range 0 to 1, and uint8 data with integer-valued intensities from 0
to 255. As MATLAB’s native datatype, double data is the natural choice, and
the R’G’B’ format used by colorspace. However, for memory and computa-
tional performance, some functions also operate with uint8 R’G’B’. Given uint8
R’G’B’ color data, colorspace will first cast it to double R’G’B’ before process-
ing.

• If im is an M × 3 array, like a colormap, out will also have size M × 3.

Author

Pascal Getreuer 2005-2006

Machine Vision Toolbox for MATLAB
R©

52 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

diff2
Two point difference

d = diff2(v) is the 2-point difference for each point in the vector v and the first element
is zero. The vector d has the same length as v.

See also

diff

distance
Euclidean distances between sets of points

d = distance(a,b) is the Euclidean distances between L-dimensional points described
by the matrices a (L×M) and b (L×N) respectively. The distance d is M ×N and
element d(I,J) is the distance between points a(I) and d(J).

Example

A = rand(400,100); B = rand(400,200);
d = distance(A,B);

Notes

• This fully vectorized (VERY FAST!)

• It computes the Euclidean distance between two vectors by:

||A-B|| = sqrt (||A||ˆ2 + ||B||ˆ2 - 2*A.B)

Author

Roland Bunschoten, University of Amsterdam, Intelligent Autonomous Systems (IAS)
group, Kruislaan 403 1098 SJ Amsterdam, tel.(+31)20-5257524, bunschot@wins.uva.nl
Last Rev: Oct 29 16:35:48 MET DST 1999, Tested: PC Matlab v5.2 and Solaris Matlab
v5.3, Thanx: Nikos Vlassis.

Machine Vision Toolbox for MATLAB
R©

53 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

closest

e2h
Euclidean to homogeneous

H = e2h(E) is the homogeneous version (K+1×N) of the Euclidean points E (K×N)
where each column represents one point in RK .

See also

h2e

EarthView
Image from Google maps

A concrete subclass of ImageSource that acquires images from Google maps.

Methods

grab Grab a frame from Google maps
size Size of image
close Close the image source
char Convert the object parameters to human readable string

Examples

Create an EarthView camera

ev = EarthView();

Zoom into QUT campus in Brisbane

ev.grab(-27.475722,153.0285, 17);

Show aerial view of Brisbane in satellite and map view

Machine Vision Toolbox for MATLAB
R©

54 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

ev.grab(’brisbane’, 14)
ev.grab(’brisbane’, 14, ’map’)

Notes

• Google limit the number of map queries limit to 1000 unique (different) image
requests per viewer per day. A 403 error is returned if the daily quota is exceeded.

• Maximum size is 640× 640 for free access, business users can get more.

• There are lots of conditions on what you can do with the images, particularly
with respect to publication. See the Google web site for details.

Author

Peter Corke, with some lines of code from from get google map by Val Schmidt.

See also

ImageSource

EarthView.EarthView
Create EarthView object

ev = EarthView(options)

Options

‘satellite’ Retrieve satellite image
‘map’ Retrieve map image
‘hybrid’ Retrieve satellite image with map overlay
‘scale’ Google map scale (default 18)
‘width’, W Set image width to W (default 640)
‘height’, H Set image height to H (default 640)
‘key’, S The Google maps key string

see also options for ImageSource.

Notes

• A key is required before you can use the Google Static Maps API. The key is
a long string that can be passed to the constructor or saved as an environment
variable GOOGLE KEY. You need a Google account before you can register for
a key.

Machine Vision Toolbox for MATLAB
R©

55 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Scale is 1 for the whole world, 20 is about as high a resolution as you can get.

See also

ImageSource, EarthView.grab

EarthView.char
Convert to string

EV.char() is a string representing the state of the EarthView object in human readable
form.

See also

EarthView.display

EarthView.grab
Grab an aerial image

im = EV.grab(lat, long, options) is an image of the Earth centred at the geographic
coordinate (lat, long).

im = EarthView.grab(lat, long, zoom, options) as above with the specified zoom.
zoom is an integer between 1 (zoom right out) to a maximum of 18-20 depending on
where in the world you are looking.

[im,E,n] = EarthView.grab(lat, long, options) as above but also returns the estimated
easting E and northing n. E and n are both matrices, the same size as im, whose
corresponding elements are the easting and northing are the coordinates of the pixel.

[im,E,n] = EarthView.grab(name, options) as above but uses a geocoding web site
to resolve the name to a location.

Options

‘satellite’ Retrieve satellite image
‘map’ Retrieve map image
‘hybrid’ Retrieve satellite image with map overlay
‘scale’ Google map scale (default 18)

Machine Vision Toolbox for MATLAB
R©

56 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Examples

Zoom into QUT campus in Brisbane

ev.grab(-27.475722,153.0285, 17);

Show aerial view of Brisbane in satellite and map view

ev.grab(’brisbane’, 14)
ev.grab(’brisbane’, 14, ’map’)

Notes

• If northing/easting outputs are requested the function deg2utm is required (from
MATLAB Central)

• The easting/northing is somewhat approximate, see get google map on MAT-
LAB Central.

• If no output argument is given the image is displayed using idisp.

edgelist
Return list of edge pixels for region

E = edgelist(im, seed) is a list of edge pixels of a region in the image im starting at edge
coordinate seed (i,j). The result E is a matrix, each row is one edge point coordinate
(x,y).

E = edgelist(im, seed, direction) is a list of edge pixels as above, but the direction
of edge following is specified. direction == 0 (default) means clockwise, non zero
is counter-clockwise. Note that direction is with respect to y-axis upward, in matrix
coordinate frame, not image frame.

Notes

• im is a binary image where 0 is assumed to be background, non-zero is an object.

• seed must be a point on the edge of the region.

• The seed point is always the first element of the returned edgelist.

See also

ilabel

Machine Vision Toolbox for MATLAB
R©

57 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

epidist
Distance of point from epipolar line

d = epidist(f, p1, p2) is the distance of the points p2 (2 ×M) from the epipolar lines
due to points p1 (2 × N) where f (3 × 3) is a fundamental matrix relating the views
containing image points p1 and p2.

d (N × M) is the distance matrix where element d(i,j) is the distance from the point
p2(j) to the epipolar line due to point p1(i).

Author

Based on fmatrix code by, Nuno Alexandre Cid Martins, Coimbra, Oct 27, 1998, I.S.R.

See also

epiline, fmatrix

epiline
Draw epipolar lines

epiline(f, p) draws epipolar lines in current figure based on points p (2 × N) and the
fundamental matrix f (3× 3). Points are specified by the columns of p.

epiline(f, p, ls) as above but draw lines using the line style arguments ls.

H = epiline(f, p, ls) as above but return a vector of graphic handles, one per line drawn.

See also

fmatrix, epidist

Machine Vision Toolbox for MATLAB
R©

58 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

FeatureMatch
Feature correspondence object

This class represents the correspondence between two PointFeature objects. A vector
of FeatureMatch objects can represent the correspondence between sets of points.

Methods

plot Plot corresponding points
show Show summary statistics of corresponding points

ransac Determine inliers and outliers
inlier Return inlier matches
outlier Return outlier matches
subset Return a subset of matches

display Display value of match
char Convert value of match to string

Properties

p1 Point coordinates in view 1 (2× 1)
p2 Point coordinates in view 2 (2× 1)
p Point coordinates in view 1 and 2 (4× 1)
distance Match strength between the points

Properties of a vector of FeatureMatch objects are returned as a vector. If F is a vector
(N × 1) of FeatureMatch objects then F.p1 is a 2 × N matrix with each column the
corresponding view 1 point coordinate.

Note

• FeatureMatch is a reference object.

• FeatureMatch objects can be used in vectors and arrays

• Operates with all objects derived from PointFeature, such as ScalePointFeature,
SurfPointFeature and SiftPointFeature.

See also

PointFeature, SurfPointFeature, SiftPointFeature

Machine Vision Toolbox for MATLAB
R©

59 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

FeatureMatch.FeatureMatch
Create a new FeatureMatch object

m = FeatureMatch(f1, f2, s) is a new FeatureMatch object describing a correspon-
dence between point features f1 and f2 with a strength of s.

m = FeatureMatch(f1, f2) as above but the strength is set to NaN.

Notes

• Only the coordinates of the PointFeature are kept.

See also

PointFeature, SurfPointFeature, SiftPointFeature

FeatureMatch.char
Convert to string

s = M.char() is a compact string representation of the match object. If M is a vector
then the string has multiple lines, one per element.

FeatureMatch.display
Display value

M.display() displays a compact human-readable representation of the feature pair. If
M is a vector then the elements are printed one per line.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a FeatureMatch object and the command has no trailing semicolon.

See also

FeatureMatch.char

Machine Vision Toolbox for MATLAB
R©

60 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

FeatureMatch.inlier
Inlier features

m2 = M.inlier() is a subset of the FeatureMatch vector M that are considered to be
inliers.

Notes

• Inliers are not determined until after RANSAC is run.

See also

FeatureMatch.outlier, FeatureMatch.ransac

FeatureMatch.outlier
Outlier features

m2 = M.outlier() is a subset of the FeatureMatch vector M that are considered to be
outliers.

Notes

• Outliers are not determined until after RANSAC is run.

See also

FeatureMatch.inlier, FeatureMatch.ransac

FeatureMatch.p
Feature point coordinate pairs

p = M.p() is a 4 × N matrix containing the feature point coordinates. Each column
contains the coordinates of a pair of corresponding points [u1,v1,u2,v2].

Machine Vision Toolbox for MATLAB
R©

61 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

FeatureMatch.p1, FeatureMatch.p2

FeatureMatch.p1
Feature point coordinates from view 1

p = M.p1() is a 2 × N matrix containing the feature points coordinates from view 1.
These are the (u,v) properties of the feature F1 passed to the constructor.

See also

FeatureMatch.FeatureMatch, FeatureMatch.p2, FeatureMatch.p

FeatureMatch.p2
Feature point coordinates from view 2

p = M.p2() is a 2 × N matrix containing the feature points coordinates from view 1.
These are the (u,v) properties of the feature F2 passed to the constructor.

See also

FeatureMatch.FeatureMatch, FeatureMatch.p1, FeatureMatch.p

FeatureMatch.plot
Show corresponding points

M.plot() overlays the correspondences in the FeatureMatch vector M on the current
figure. The figure must comprise views 1 and 2 side by side, for example by:

idisp({im1,im2})
m.plot()

M.plot(ls) as above but the optional line style arguments ls are passed to plot.

Machine Vision Toolbox for MATLAB
R©

62 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Using IDISP as above adds UserData to the figure, and an error is created if this
UserData is not found.

See also

idisp

FeatureMatch.ransac
Apply RANSAC

M.ransac(func, options) applies the RANSAC algorithm to fit the point correspon-
dences to the model described by the function func. The options are passed to the
RANSAC() function. Elements of the FeatureMatch vector have their status updated
in place to indicate whether they are inliers or outliers.

Example

f1 = isurf(im1);
f2 = isurf(im2);
m = f1.match(f2);
m.ransac(@fmatrix, 1e-4);

See also

fmatrix, homography, ransac

FeatureMatch.show
Display summary statistics of the FeatureMatch vector

M.show() is a compact summary of the FeatureMatch vector M that gives the number
of matches, inliers and outliers (and their percentages).

Machine Vision Toolbox for MATLAB
R©

63 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

FeatureMatch.subset
Subset of matches

m2 = M.subset(n) is a FeatureMatch vector with no more than n elements sampled
uniformly from M.

filt1d
1-dimensional rank filter

y = filt1d(x, options) is the minimum, maximum or median value (1×N) of the vector
x (1×N) compute over an odd length sliding window.

Options

‘max’ Compute maximum value over the window (default)
‘min’ Compute minimum value over the window
‘median’ Compute minimum value over the window
‘width’, W Width of the window (default 5)

Notes

• If the window width is even, it is incremented by one.

• The first and last elements of x are replicated so the output vector is the same
length as the input vector.

FishEyeCamera
Fish eye camera class

A concrete class a fisheye lense projection camera.

The camera coordinate system is:

Machine Vision Toolbox for MATLAB
R©

64 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

0------------> u, X
|
|
| + (principal point)
|
| Z-axis is into the page.
v, Y

This camera model assumes central projection, that is, the focal point is at z=0 and the
image plane is at z=f. The image is not inverted.

Methods

project project world points to image plane

plot plot/return world point on image plane
hold control hold for image plane
ishold test figure hold for image plane
clf clear image plane
figure figure holding the image plane
mesh draw shape represented as a mesh
point draw homogeneous points on image plane
line draw homogeneous lines on image plane
plot camera draw camera

rpy set camera attitude
move copy of Camera after motion
centre get world coordinate of camera centre

delete object destructor
char convert camera parameters to string
display display camera parameters

Properties (read/write)

npix image dimensions in pixels (2× 1)
pp intrinsic: principal point (2× 1)
f intrinsic: focal length [metres]
rho intrinsic: pixel dimensions (2× 1) [metres]
T extrinsic: camera pose as homogeneous transformation

Properties (read only)

nu number of pixels in u-direction
nv number of pixels in v-direction

Machine Vision Toolbox for MATLAB
R©

65 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Camera is a reference object.

• Camera objects can be used in vectors and arrays

See also

Camera

FishEyeCamera.FishEyeCamera
Create fisheyecamera object

C = FishEyeCamera() creates a fisheye camera with canonic parameters: f=1 and
name=’canonic’.

C = FishEyeCamera(options) as above but with specified parameters.

Options

‘name’, N Name of camera
‘default’ Default camera parameters: 1024 × 1024, f=8mm, 10um pixels, camera at origin,

optical axis is z-axis, u- and v-axes are parallel to x- and y- axes respectively.
‘projection’, M Fisheye model: ‘equiangular’ (default), ‘sine’, ‘equisolid’, ‘stereographic’
‘k’, K Parameter for the projection model
‘resolution’, N Image plane resolution: N ×N or N=[W H].
‘sensor’, S Image sensor size [metres] (2× 1)
‘centre’, P Principal point (2× 1)
‘pixel’, S Pixel size: S × S or S=[W H].
‘noise’, SIGMA Standard deviation of additive Gaussian noise added to returned image projections
‘pose’, T Pose of the camera as a homogeneous transformation

Notes

• If K is not specified it is computed such that the circular imaging region maxi-
mally fills the square image plane.

See also

Camera, CentralCamera, CatadioptricCamera, SphericalCamera

Machine Vision Toolbox for MATLAB
R©

66 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

FishEyeCamera.project
Project world points to image plane

uv = C.project(p, options) are the image plane coordinates for the world points p.
The columns of p (3×N) are the world points and the columns of uv (2×N) are the
corresponding image plane points.

Options

‘Tobj’, T Transform all points by the homogeneous transformation T before projecting them to
the camera image plane.

‘Tcam’, T Set the camera pose to the homogeneous transformation T before projecting points to
the camera image plane. Temporarily overrides the current camera pose C.T.

See also

FishEyeCamera.plot

fmatrix
Estimate fundamental matrix

f = fmatrix(p1, p2, options) is the fundamental matrix (3× 3) that relates two sets of
corresponding points p1 (2×N) and p2 (2×N) from two different camera views.

Notes

• The points must be corresponding, no outlier rejection is performed.

• Contains a RANSAC driver, which means it can be passed to ransac().

• f is a rank 2 matrix, that is, it is singular.

Reference

Hartley and Zisserman, ‘Multiple View Geometry in Computer Vision’, page 270.

Machine Vision Toolbox for MATLAB
R©

67 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Author

Based on fundamental matrix code by Peter Kovesi, School of Computer Science &
Software Engineering, The University of Western Australia, http://www.csse.uwa.edu.au/,

See also

ransac, homography, epiline, epidist

gauss2d
Gaussian kernel

out = gauss2d(im, sigma, C) is a unit volume Gaussian kernel rendered into matrix
out (W ×H) the same size as im (W ×H). The Gaussian has a standard deviation of
sigma. The Gaussian is centered at C=[U,V].

gaussfunc
kernel

k = gauss1(, c, sigma)

Returns a unit volume Gaussian smoothing kernel. The Gaussian has a standard devi-
ation of sigma, and the convolution kernel has a half size of w, that is, k is (2W+1) x
(2W+1).

h2e
Homogeneous to Euclidean

E = h2e(H) is the Euclidean version (K-1×N) of the homogeneous points H (K×N)
where each column represents one point in PK .

Machine Vision Toolbox for MATLAB
R©

68 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

e2h

hist2d
MEX file to compute 2-D histogram.

[h,vx,vy] = hist2d(x,y)

or

[h,vx,vy] = hist2d(x,y,[x0 dx nx],[y0 dy ny])

Inputs:

x,y data points. {x(i),y(i)} is a single data point.
x0 lowest x bin’s lower edge
dx x bin width
nx number of x bins
y0 lowest y bin’s lower edge
dy y bin width
ny number of y bins
[x0,dx,nx] and [y0,dy,ny] default = [0,1,256]

Outputs:

h histogram matrix. h(i,j) = number of data points

satisfying vx(j) <= x < vx(j+1) and vy(i) <= y < vy(i+1).

vx bin lower x-ordinates (one for each column of h)
vy bin lower y-ordinates (one for each row of h)

Notes

• Data vectors x and y must be double

Author

Michael Maurer, 7 October 1994. Copyright 1994 by Michael Maurer.

Machine Vision Toolbox for MATLAB
R©

69 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

hitormiss
Hit or miss transform

H = hitormiss(im, se) is the hit-or-miss transform of the binary image im with the
structuring element se. Unlike standard morphological operations S has three possible
values: 0, 1 and don’t care (represented by NaN).

References

• Robotics, Vision & Control, Section 12.5.3, P. Corke, Springer 2011.

See also

imorph, ithin, itriplepoint, iendpoint

homline
Homogeneous line from two points

L = homline(x1, y1, x2, y2) is a vector (3× 1) which describes a line in homogeneous
form that contains the two Euclidean points (x1,y1) and (x2,y2).

Homogeneous points X (3× 1) on the line must satisfy L’*X = 0.

See also

plot homline

homography
Estimate homography

H = homography(p1, p2) is the homography (3 × 3) that relates two sets of corre-
sponding points p1 (2×N) and p2 (2×N) from two different camera views of a planar
object.

Machine Vision Toolbox for MATLAB
R©

70 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• The points must be corresponding, no outlier rejection is performed.

• The points must be projections of points lying on a world plane

• Contains a RANSAC driver, which means it can be passed to ransac().

Author

Based on homography code by Peter Kovesi, School of Computer Science & Software
Engineering, The University of Western Australia, http://www.csse.uwa.edu.au/,

See also

ransac, invhomog, fmatrix

homtrans
Apply a homogeneous transformation

p2 = homtrans(T, p) applies homogeneous transformation T to the points stored
columnwise in p.

• If T is in SE(2) (3× 3) and

– p is 2×N (2D points) they are considered Euclidean (R2)

– p is 3×N (2D points) they are considered projective (p2)

• If T is in SE(3) (4× 4) and

– p is 3×N (3D points) they are considered Euclidean (R3)

– p is 4×N (3D points) they are considered projective (p3)

tp = homtrans(T, T1) applies homogeneous transformation T to the homogeneous
transformation T1, that is tp=T*T1. If T1 is a 3-dimensional transformation then T is
applied to each plane as defined by the first two

dimensions, ie. if T = N ×N and T=N ×N × p then the result is N ×N × p.

See also

e2h, h2e

Machine Vision Toolbox for MATLAB
R©

71 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

homwarp
Warp image by an homography

out = homwarp(H, im, options) is a warp of the image im obtained by applying the
homography H to the coordinates of every input pixel.

[out,offs] = homwarp(H, im, options) as above but offs is the offset of the warped tile
out with respect to the origin of im.

Options

‘full’ output image contains all the warped pixels, but its position with respect to the input
image is given by the second return value offs.

‘extrapval’, V set unmapped pixels to this value (default NaN)
‘roi’, R output image contains the specified ROI in the input image
‘scale’, S scale the output by this factor
‘dimension’, D ensure output image is D ×D
‘size’, S size of output image S=[W,H]
‘coords’, U,V coordinate matrices for im, each same size as im.

Notes

• The edges of the resulting output image will in general not be be vertical and
horizontal lines.

See also

homography, itrim, interp2

Hough
Hough transform class

The Hough transform is a technique for finding lines in an image using a voting scheme.
For every edge pixel in the input image a set of cells in the Hough accumulator (voting
array) are incremented.

In this version of the Hough transform lines are described by:

d = y cos(theta) + x sin(theta)

Machine Vision Toolbox for MATLAB
R©

72 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

where theta is the angle the line makes to horizontal axis, and d is the perpendicular
distance between (0,0) and the line. A horizontal line has theta = 0, a vertical line has
theta = pi/2 or -pi/2.

The voting array is 2-dimensional, with columns corresponding to theta and rows cor-
responding to offset (d). Theta spans the range -pi/2 to pi/2 in Ntheta steps. Offset is
in the range -rho max to rho max where rho max=max(W,H).

Methods

plot Overlay detected lines
show Display the Hough accumulator
lines Return line features
char Convert Hough parameters to string
display Display Hough parameters

Properties

Nrho Number of bins in rho direction
Ntheta Number of bins in theta direction
A The Hough accumulator (Nrho x Ntheta)
rho rho values for the centre of each bin vertically
theta Theta values for the centre of each bin horizontally
edgeThresh Threshold on relative edge pixel strength
houghThresh Threshold on relative peak strength
suppress Radius of accumulator cells cleared around peak
interpWidth Width of region used for peak interpolation

Notes

• Hough is a reference object.

See also

LineFeature

Hough.Hough
Create Hough transform object

ht = Hough(E, options) is the Hough transform of the edge image E.

For every pixel in the edge image E (H×W) greater than a threshold the corresponding
elements of the accumulator are incremented. By default the vote is incremented by

Machine Vision Toolbox for MATLAB
R©

73 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

the edge strength but votes can be made equal with the option ‘equal’. The threshold is
determined from the maximum edge strength value x ht.edgeThresh.

Options

‘equal’ All edge pixels have equal weight, otherwise the edge pixel value is the vote strength
‘points’ Pass set of points rather than an edge image, in this case E (2×N) is a set of N points,

or E (3×N) is a set of N points with corresponding vote strengths as the third row
‘interpwidth’, W Interpolation width (default 3)
‘houghthresh’, T Set ht.houghThresh (default 0.5)
‘edgethresh’, T Set ht.edgeThresh (default 0.1);
‘suppress’, W Set ht.suppress (default 0)
‘nbins’, N Set number of bins, if N is scalar set Nrho=Ntheta=N, else N = [Ntheta, Nrho]. Default

400× 401.

Hough.char
Convert to string

s = HT.char() is a compact string representation of the Hough transform parameters.

Hough.display
Display value

HT.display() displays a compact human-readable string representation of the Hough
transform parameters.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a Hough object and the command has no trailing semicolon.

See also

Hough.char

Machine Vision Toolbox for MATLAB
R©

74 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Hough.lines
Find lines

L = HT.lines() is a vector of LineFeature objects that represent the dominant lines in
the Hough accumulator.

L = HT.lines(n) as above but returns no more than n LineFeature objects.

Lines are the coordinates of peaks in the Hough accumulator. The highest peak is
found, refined to subpixel precision, then all elements in an HT.suppress radius around
are zeroed so as to eliminate multiple close minima. The process is repeated for all
peaks.

The peak detection loop breaks early if the remaining peak has a strength less than
HT.houghThresh times the maximum vote value.

See also

Hough.plot, LineFeature

Hough.plot
Plot line features

HT.plot() overlays all detected lines on the current figure.

HT.plot(n) overlays a maximum of n strongest lines on the current figure.

HT.plot(n, ls) as above but the optional line style arguments ls are passed to plot.

H = HT.plot() as above but returns a vector of graphics handles for each line.

See also

Hough.lines

Hough.show
Display the Hough accumulator as image

s = HT.show() displays the Hough vote accumulator as an image using the hot col-
ormap, where ‘heat’ is proportional to the number of votes.

Machine Vision Toolbox for MATLAB
R©

75 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

colormap, hot

humoments
Hu moments

phi = humoments(im) is the vector (7 × 1) of Hu moment invariants for the binary
image im.

Notes

• im is assumed to be a binary image of a single connected region

Reference

M-K. Hu, Visual pattern recognition by moment invariants. IRE Trans. on Information
Theory, IT-8:pp. 179-187, 1962.

See also

npq

ianimate
Display an image sequence

ianimate(im, options) displays a greyscale image sequence im (H×W×N) or a color
image sequence im (HxWx3xN) where N is the number of frames in the sequence.

ianimate(im, features, options) as above but with point features overlaid. features
(N × 1) is a cell array whose elements are vectors of feature objects for the corre-
sponding frames of im. The feature is plotted using the feature object’s plot method
and additional options are passed through to that method.

Machine Vision Toolbox for MATLAB
R©

76 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Examples

Animate image sequence:

ianimate(seq);

Animate image sequence with overlaid corner features:

c = icorner(im, ’nfeat’, 200); % computer corners
ianimate(seq, c, ’gs’); % features shown as green squares

Options

‘fps’, F set the frame rate (default 5 frames/sec)
‘loop’ endlessly loop over the sequence
‘movie’, M save the animation as a series of PNG frames in the folder M
‘npoints’, N plot no more than N features per frame (default 100)
‘only’, I display only the I’th frame from the sequence
‘title’, T displays the specified title on each frame, T is a cell array (1×N) of strings.

Notes

• If titles are not specified the title is “frame N”

• If the ‘movie’ is used the frames can be converted to a movie using a utility like
ffmpeg, for instance:

ffmpeg -i *.png -r 5 movie.mp4

or to set the bit rate explicitly

ffmpeg -i *.png -b:v 64k movie.mp4

See also

PointFeature, iharris, isurf, idisp

ibbox
Find bounding box

box = ibbox(p) is the minimal bounding box that contains the points described by the
columns of p (2×N).

box = ibbox(im) as above but the box minimally contains the non-zero pixels in the
image im.

Machine Vision Toolbox for MATLAB
R©

77 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• The bounding box is a 2× 2 matrix [XMIN XMAX; YMIN YMAX].

iblobs
features

f = iblobs(im, options) is a vector of RegionFeature objects that describe each con-
nected region in the image im.

Options

‘aspect’, A set pixel aspect ratio, default 1.0
‘connect’, C set connectivity, 4 (default) or 8
‘greyscale’ compute greyscale moments 0 (default) or 1
‘boundary’ compute boundary (default off)
‘area’, [A1,A2] accept only blobs with area in the interval A1 to A2
‘shape’, [S1,S2] accept only blobs with shape in the interval S1 to S2
‘touch’, T accept only blobs that touch (1) or do not touch (0) the edge (default accept all)
‘class’, C accept only blobs of pixel value C (default all)

The RegionFeature object has many properties including:

uc centroid, horizontal coordinate
vc centroid, vertical coordinate
p centroid (uc, vc)
umin bounding box, minimum horizontal coordinate
umax bounding box, maximum horizontal coordinate
vmin bounding box, minimum vertical coordinate
vmax bounding box, maximum vertical coordinate
area the number of pixels
class the value of the pixels forming this region
label the label assigned to this region
children a list of indices of features that are children of this feature
edgepoint coordinate of a point on the perimeter
edge a list of edge points 2×N matrix
perimeter edge length (pixels)
touch true if region touches edge of the image
a major axis length of equivalent ellipse
b minor axis length of equivalent ellipse
theta angle of major ellipse axis to horizontal axis
shape aspect ratio b/a (always <= 1.0)
circularity 1 for a circle, less for other shapes
moments a structure containing moments of order 0 to 2

Machine Vision Toolbox for MATLAB
R©

78 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

References

• Robotics, Vision & Control, Section 13.1, P. Corke, Springer 2011.

icanny
edge detection

E = icanny(im, options) is an edge image obtained using the Canny edge detector
algorithm. Hysteresis filtering is applied to the gradient image: edge pixels > th1 are
connected to adjacent pixels > th0, those below th0 are set to zero.

Options

‘sd’, S set the standard deviation for smoothing (default 1)
‘th0’, T set the lower hysteresis threshold (default 0.1 x strongest edge)
‘th1’, T set the upper hysteresis threshold (default 0.5 x strongest edge)

Reference

• “A Computational Approach To Edge Detection”, J. Canny, IEEE Trans. Pattern
Analysis and Machine Intelligence, 8(6):679698, 1986.

Notes

• Produces a zero image with single pixel wide edges having non-zero values.

• Larger values correspond to stronger edges.

• If th1 is zero then no hysteresis filtering is performed.

• A color image is automatically converted to greyscale first.

Author

Oded Comay, Tel Aviv University, 1996-7.

See also

isobel, kdgauss

Machine Vision Toolbox for MATLAB
R©

79 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

iclose
closing

out = iclose(im, se, options) is the image im after morphological closing with the
structuring element se. This is a morphological dilation followed by an erosion.

out = iclose(im, se, n, options) as above but the structuring element se is applied n
times, that is n erosions followed by n dilations.

Notes

• For binary image a closing operation can be used to eliminate small black holes
in white regions.

• Cheaper to apply a smaller structuring element multiple times than one large
one, the effective structuring element is the Minkowski sum of the structuring
element with itself n times.

• Windowing options of IMORPH can be passed. By default output image is same
size as input image.

See also

iopen, idilate, ierode, imorph

icolor
Colorize a greyscale image

C = icolor(im) is a color image C (H ×W × 3)where each color plane is equal to im
(H ×W).

C = icolor(im, color) as above but each output pixel is color (3 × 1) times the corre-
sponding element of im.

Examples

Create a color image that looks the same as the greyscale image

c = icolor(im);

each set pixel in im is set to [1 1 1] in the output.

Create an rose tinted version of the greyscale image

Machine Vision Toolbox for MATLAB
R©

80 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

c = icolor(im, colorname(’pink’));

each set pixel in im is set to [0 1 1] in the output.

Notes

• Can convert a monochrome sequence (H ×W ×N) to a color image sequence
(HxWx3xN).

See also

imono, colorize, ipixswitch

iconcat
Concatenate images

C = iconcat(im,options) concatenates images from the cell array im.

iconcat(im,options) as above but displays the concatenated images using IDISP.

[C,u] = iconcat(im,options) as above but also returns the vector u whose elements are
the coordinates of the left (or top in vertical mode) edge of the corresponding image
within the concatenated image.

Options

‘dir’, D direction of concatenation: ‘horizontal’ (default) or ‘vertical’.
‘bgval’, B value of padding pixels (default NaN)

Examples

Horizontally concatenate three images

c = iconcat({im1, im2, im3}, ’h’);

Find the first column of each of the three images

[c,u] = iconcat({im1, im2, im3}, ’h’);

where u is a 3-vector such that im3 starts in the u(3)’rd column of c.

Machine Vision Toolbox for MATLAB
R©

81 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• The images do not have to be of the same size, and smaller images are surrounded
by background pixels which can be specified.

• Works for color or greyscale images.

• Direction can be abbreviated to first character, ‘h’ or ‘v’.

• In vertical mode all images are right justified.

• In horizontal mode all images are top justified.

See also

idisp

iconv
Image convolution

C = iconv(im1, im2, options) is the convolution of images im1 and im2. The smaller
image is taken as the kernel and convolved with the larger image.

Options

‘same’ output image is same size as largest input image (default)
‘full’ output image is larger than the input image
‘valid’ output image is smaller than the input image, and contains only valid pixels

Notes

• If the larger image is color (has multiple planes) the kernel is applied to each
plane, resulting in an output image with the same number of planes.

• The kernel must be greyscale.

• This function is a convenience wrapper for the MATLAB function CONV2.

• Works for double, uint8 or uint16 images. Image and kernel must be of the same
type and the result is of the same type.

Machine Vision Toolbox for MATLAB
R©

82 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

conv2

icorner
Corner detector

f = icorner(im, options) is a vector of PointFeature objects describing corner features
detected in the image im. This is a non-scale space detector and by default the Harris
method is used but Shi-Tomasi and Noble are also supported.

If im is an image sequence a cell array of PointFeature vectors for the correspnding
frames of im.

The PointFeature object has many properties including:

u horizontal coordinate
v vertical coordinate
strength corner strength
descriptor corner descriptor (vector)

See PointFeature for full details

Options

‘detector’, D choose the detector where D is one of ‘harris’ (default), ‘noble’ or ‘klt’
‘sigma’, S kernel width for smoothing (default 2)
‘deriv’, D kernel for gradient (default kdgauss(2))
‘cmin’, CM minimum corner strength
‘cminthresh’, CT minimum corner strength as a fraction of maximum corner strength
‘edgegap’, E don’t return features closer than E pixels to the edge of image (default 2)
‘suppress’, R don’t return a feature closer than R pixels to an earlier feature (default 0)
‘nfeat’, N return the N strongest corners (default Inf)
‘k’, K set the value of k for the Harris detector
‘patch’, P use a P × P patch of surrounding pixel values as the feature vector. The vector has

zero mean and unit norm.
‘color’ specify that im is a color image not a sequence

Example

Compute the 100 strongest Harris features for the image

c = icorner(im, ’nfeat’, 100);

and overlay them on the image

Machine Vision Toolbox for MATLAB
R©

83 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

idisp(im);
c.plot();

Notes

• Corners are processed in order from strongest to weakest.

• The function stops when:

– the corner strength drops below cmin, or

– the corner strength drops below cMinThresh x strongest corner, or

– the list of corners is exhausted

• Features are returned in descending strength order

• If im has more than 2 dimensions it is either a color image or a sequence

• If im is N ×M × P it is taken as an image sequence and f is a cell array whose
elements are feature vectors for the corresponding image in the sequence.

• If im is N ×M × 3 it is taken as a sequence unless the option ‘color’ is given

• If im is NxMx3xP it is taken as a sequence of color images and f is a cell ar-
ray whose elements are feature vectors for the corresponding color image in the
sequence.

• The default descriptor is a vector [Ix* Iy* Ixy*] which are the unique elements
of the structure tensor, where * denotes squared and smoothed.

• The descriptor is a vector of float types to save space

References

• “A combined corner and edge detector”, C.G. Harris and M.J. Stephens, Proc.
Fourth Alvey Vision Conf., Manchester, pp 147-151, 1988.

• “Finding corners”, J.Noble, Image and Vision Computing, vol.6, pp.121-128,
May 1988.

• “Good features to track”, J. Shi and C. Tomasi, Proc. Computer Vision and
Pattern Recognition, pp. 593-593, IEEE Computer Society, 1994.

– Robotics, Vision & Control, Section 13.3, P. Corke, Springer 2011.

See also

PointFeature, isurf

Machine Vision Toolbox for MATLAB
R©

84 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

icp
Point cloud alignment

T = icp(p1, p2, options) is the homogeneous transformation that best transforms the
set of points p1 to p2 using the iterative closest point algorithm.

[T,d] = icp(p1, p2, options) as above but also returns the norm of the error between
the transformed point set p2 and p1.

Options

‘dplot’, d show the points p1 and p2 at each iteration, with a delay of d [sec].
‘plot’ show the points p1 and p2 at each iteration, with a delay of 0.5 [sec].
‘maxtheta’, T limit the change in rotation at each step to T (default 0.05 rad)
‘maxiter’, N stop after N iterations (default 100)
‘mindelta’, T stop when the relative change in error norm is less than T (default 0.001)
‘distthresh’, T eliminate correspondences more than T x the median distance at each iteration.

Example

Create a 3D point cloud

p1 = randn(3,20);

Transform it by an arbitrary amount

T = transl(1,2,3)*eul2tr(0.1, 0.2, 0.3)
p2 = homtrans(T, p1);

Perform icp to determine the transformation that maps p1 to p2

icp(p1, p2)

Notes

• Does not require knowledge of correspondence between the points.

– The point sets may have different numbers of points.

– Points in either set may have no corresponding point.

• Points can be 2- or 3-dimensional.

• For noisy data setting distthresh and maxtheta can help to prevent the solution
from diverging.

Machine Vision Toolbox for MATLAB
R©

85 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Reference

• “A method for registration of 3D shapes”, P.Besl and H.McKay, IEEETrans.
Pattern Anal. Mach. Intell., vol. 14, no. 2, pp. 239-256, Feb. 1992.

idecimate
an image

s = idecimate(im, m) is a decimated version of the image im whose size is reduced by
m (an integer) in both dimensions. The image is smoothed with a Gaussian kernel with
standard deviation m/2 then subsampled.

s = idecimate(im, m, sd) as above but the standard deviation of the smoothing kernel
is set to sd.

s = idecimate(im, m, []) as above but no smoothing is applied prior to decimation.

Notes

• If the image has multiple planes, each plane is decimated.

• Smoothing is used to eliminate aliasing artifacts and the standard deviation should
be chosen as a function of the maximum spatial frequency in the image.

See also

iscale, ismooth, ireplicate

idilate
Morphological dilation

out = idilate(im, se, options) is the image im after morphological dilation with the
structuring element se.

out = idilate(im, se, n, options) as above but the structuring element se is applied n
times, that is n dilations.

Machine Vision Toolbox for MATLAB
R©

86 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘border’ the border value is replicated (default)
‘none’ pixels beyond the border are not included in the window
‘trim’ output is not computed for pixels where the structuring element crosses the image

border, hence output image had reduced dimensions.
‘wrap’ the image is assumed to wrap around, left to right, top to bottom.

Notes

• Cheaper to apply a smaller structuring element multiple times than one large
one, the effective structuring element is the Minkowski sum of the structuring
element with itself n times.

• Windowing options of IMORPH can be passed.

Reference

• Robotics, Vision & Control, Section 12.5, P. Corke, Springer 2011.

See also

ierode, iclose, iopen, imorph

idisp
image display tool

idisp(im, options) displays an image and allows interactive investigation of pixel val-
ues, linear profiles, histograms and zooming. The image is displayed in a figure with
a toolbar across the top. If im is a cell array of images, they are first concatenated
(horizontally).

User interface

• Left clicking on a pixel will display its value in a box at the top.

• The “line” button allows two points to be specified and a new figure displays
intensity along a line between those points.

• The “histo” button displays a histogram of the pixel values in a new figure. If the
image is zoomed, the histogram is computed over only those pixels in view.

Machine Vision Toolbox for MATLAB
R©

87 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

• The “zoom” button requires a left-click and drag to specify a box which defines
the zoomed view.

Options

‘nogui’ don’t display the GUI
‘noaxes’ don’t display axes on the image
‘noframe’ don’t display axes or frame on the image
‘plain’ don’t display axes, frame or GUI
‘axis’, A display the image in the axes given by handle A, the ‘nogui’ option is enforced.
‘here’ display the image in the current axes
‘title’, T put the text T in the title bar of the window
‘clickfunc’, F invoke the function handle F(x,y) on a down-click in the window
‘ncolors’, N number of colors in the color map (default 256)
‘bar’ add a color bar to the image
‘print’, F write the image to file F in EPS format
‘square’ display aspect ratio so that pixels are squate
‘wide’ make figure full screen width, useful for displaying stereo pair
‘flatten’ display image planes (colors or sequence) as horizontally adjacent images
‘ynormal’ y-axis increases upward, image is inverted
‘histeq’ apply histogram equalization
‘cscale’, C C is a 2-vector that specifies the grey value range that spans the colormap.
‘xydata’, XY XY is a cell array whose elements are vectors that span the x- and y-axes respectively.
‘colormap’, C set the colormap to C (N × 3)
‘grey’ color map: greyscale unsigned, zero is black, maximum value is white
‘invert’ color map: greyscale unsigned, zero is white, maximum value is black
‘signed’ color map: greyscale signed, positive is blue, negative is red, zero is black
‘invsigned’ color map: greyscale signed, positive is blue, negative is red, zero is white
‘random’ color map: random values, highlights fine structure
‘dark’ color map: greyscale unsigned, darker than ‘grey’, good for superimposed graphics
‘new’ create a new figure

Notes

• Is a wrapper around the MATLAB builtin function IMAGE. See the MATLAB
help on “Display Bit-Mapped Images” for details of color mapping.

• Color images are displayed in MATLAB true color mode: pixel triples map to
display RGB values. (0,0,0) is black, (1,1,1) is white.

• Greyscale images are displayed in indexed mode: the image pixel value is mapped
through the color map to determine the display pixel value.

• For grey scale images the minimum and maximum image values are mapped to
the first and last element of the color map, which by default (’greyscale’) is the
range black to white. To set your own scaling between displayed grey level and
pixel value use the ‘cscale’ option.

Machine Vision Toolbox for MATLAB
R©

88 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Examples

Display 2 images side by side

idisp({im1, im2})

Display image in a subplot

subplot(211)
idisp(im, ’axis’, gca);

Call a user function when you click a pixel

idisp(im, ’clickfunc’, @(x,y) fprintf(’hello %d %d\n’, x,y))

Set a colormap, in this case a MATLAB builtin one

idisp(im, ’colormap’, cool);

Display an image which contains a map of a region, perhaps an obstacle grid, that spans
real world dimensions x, y in the range -10 to 10.

idisp(map, ’xyscale’, {[-10 10], [-10 10]});

See also

image, caxis, colormap, iconcat

idisplabel
Display an image with mask

idisplabel(im, labelimage, labels) displays only those image pixels which belong to a
specific class. im is a greyscale (H×W) or color (H×W ×3) image, and labelimage
(H × W) contains integer pixel class labels for the corresponding pixels in im. The
pixel classes to be displayed are given by labels which is either a scalar or a vector of
class labels. Non-selected pixels are displayed as white by default.

idisplabel(im, labelimage, labels, bg) as above but the grey level of the non-selected
pixels is specified by bg in the range 0 to 1 for a float image or 0 to 255 for a uint8
image..

Example

We will segment the image flowers into 7 color classes

cls = colorkemans(flowers, 7);

where the matrix cls is the same size as flowers and the elements are the corresponding
pixel class, a value in the range 1 to 7. To display pixels of class 5 we use

Machine Vision Toolbox for MATLAB
R©

89 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

idisplabel(flowers, cls, 5)

and to display pixels belong to class 1 or 5 we use

idisplabel(flowers, cls, [1 5])

See also

iblobs, icolorize, colorseg

idouble
Convert integer image to double

imd = idouble(im) is an image with double precision elements in the range 0 to 1
corresponding to the elements of im. The integer pixels im are assumed to span the
range 0 to the maximum value of their integer class.

Notes

• Works for an image with arbitrary number of dimensions, eg. a color image or
image sequence.

• There is a linear mapping (scaling) of the values of imd to im.

See also

iint, cast

iendpoint
Find end points in a binary skeleton image

out = iendpoint(im) is a binary image where pixels are set if the corresponding pixel
in the binary image im is the end point of a single-pixel wide line such as found in an
image skeleton. Computed using the hit-or-miss morphological operator.

Machine Vision Toolbox for MATLAB
R©

90 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

References

• Robotics, Vision & Control, Section 12.5.3 P. Corke, Springer 2011.

See also

itriplepoint, ithin, hitormiss

ierode
Morphological erosion

out = ierode(im, se, options) is the image im after morphological erosion with the
structuring element se.

out = ierode(im, se, n, options) as above but the structuring element se is applied n
times, that is n erosions.

Options

‘border’ the border value is replicated (default)
‘none’ pixels beyond the border are not included in the window
‘trim’ output is not computed for pixels where the structuring element crosses the image

border, hence output image had reduced dimensions.
‘wrap’ the image is assumed to wrap around, left to right, top to bottom.

Notes

• Cheaper to apply a smaller structuring element multiple times than one large one,
the effective structuing element is the Minkowski sum of the structuring element
with itself n times.

• Windowing options of IMORPH can be passed.

Reference

• Robotics, Vision & Control, Section 12.5, P. Corke, Springer 2011.

Machine Vision Toolbox for MATLAB
R©

91 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

idilate, iclose, iopen, imorph

igamma
correction

out = igamma(im, gamma) is a gamma corrected version of the image im. All pixels
are raised to the power gamma. Gamma encoding can be performed with gamma > 1
and decoding with gamma < 1.

out = igamma(im, ‘sRGB’) is a gamma decoded version of im using the sRGB decod-
ing function (JPEG images sRGB encoded).

Notes

• Gamma decoding should be applied to any color image prior to colometric oper-
ations.

• The exception to this is colorspace conversion using COLORSPACE which ex-
pects RGB images to be gamma encoded.

• Gamma encoding is typically performed in a camera with gamma=0.45.

• Gamma decoding is typically performed in the display with gamma=2.2.

• For images with multiple planes the gamma correction is applied to all planes.

• For images sequences the gamma correction is applied to all elements.

• For images of type double the pixels are assumed to be in the range 0 to 1.

• For images of type int the pixels are assumed in the range 0 to the maximum
value of their class. Pixels are converted first to double, processed, then con-
verted back to the integer class.

See also

iread, colorspace

Machine Vision Toolbox for MATLAB
R©

92 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

igraphseg
Graph-based image segmentation

L = igraphseg(im, k, min) is a graph-based segmentation of the color image im (H ×
W × 3). L (H × W) is an image where each element is the label assigned to the
corresponding pixel in im. k is the scale parameter, and a larger value indicates a
preference for larger regions, min is the minimum region size (pixels).

L = igraphseg(im, k, min, sigma) as above and sigma is the width of a Gaussian
which is used to initially smooth the image (default 0.5).

[L,nreg] = igraphseg(im, k, min, sigma) as above but nreg is the number of regions
found.

Example

im = iread(’58060.jpg’);
[labels,maxval] = igraphseg(im, 1500, 100, 0.5);
idisp(labels)

Reference

“Efficient graph-based image segmentation”, P. Felzenszwalb and D. Huttenlocher, Int.
Journal on Computer Vision, vol. 59, pp. 167181, Sept. 2004.

Notes

• Requires a color uint8 image.

• The hardwork is done by a MEX file in contrib/graphseg.

• With zero smoothing the number of regions can be massive and can crash MAT-
LAB.

Author

Pedro Felzenszwalb, 2006.

See also

ithresh, imser

Machine Vision Toolbox for MATLAB
R©

93 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

ihist
Image histogram

ihist(im, options) displays the image histogram. For an image with multiple planes
the histogram of each plane is given in a separate subplot.

H = ihist(im, options) is the image histogram as a column vector. For an image with
multiple planes H is a matrix with one column per image plane.

[H,x] = ihist(im, options) as above but also returns the bin coordinates as a column
vector x.

Options

‘nbins’ number of histogram bins (default 256)
‘cdf’ compute a cumulative histogram
‘normcdf’ compute a normalized cumulative histogram, whose maximum value is one
‘sorted’ histogram but with occurrence sorted in descending magnitude order. Bin coordinates

x reflect this sorting.

Example

[h,x] = ihist(im);
bar(x,h);

[h,x] = ihist(im, ’normcdf’);
plot(x,h);

Notes

• For a uint8 image the MEX function FHIST is used (if available)

– The histogram always contains 256 bins

– The bins spans the greylevel range 0-255.

• For a floating point image the histogram spans the greylevel range 0-1.

• For floating point images all NaN and Inf values are first removed.

See also

hist

Machine Vision Toolbox for MATLAB
R©

94 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

iint
Convert image to integer class

out = iint(im) is an image with unsigned 8-bit integer elements in the range 0 to 255
corresponding to the elements of the image im.

out = iint(im, class) as above but the output pixels belong to the integer class class.

Examples

Convert double precision image to 8-bit unsigned integer

im = rand(50, 50);
out = iint(im);

Convert double precision image to 16-bit unsigned integer

im = rand(50, 50);
out = iint(im, ’uint16’);

Convert 8-bit unsigned integer image to 16-bit unsigned integer

im = randi(255, 50, 50, ’uint8’);
out = iint(im, ’uint16’);

Notes

• Works for an image with arbitrary number of dimensions, eg. a color image or
image sequence.

• If the input image is floating point (single or double) the pixel values are scaled
from an input range of [0,1] to a range spanning zero to the maximum positive
value of the output integer class.

• If the input image is an integer class then the pixels are cast to change type but
not their value.

See also

idouble

Machine Vision Toolbox for MATLAB
R©

95 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

iisum
Sum of integral image

s = iisum(ii, u1, v1, u2, v2) is the sum of pixels in the rectangular image region defined
by its top-left (u1,v1) and bottom-right (u2,v2). ii is a precomputed integral image.

See also

intgimage

ilabel
Label an image

L = ilabel(im) is a label image that indicates connected components within the image
im (H×W). Each pixel in L (H×W) is an integer label that indicates which connected
region the corresponding pixel in im belongs to. Region labels are in the range 1 to M.

[L,m] = ilabel(im) as above but returns the value of the maximum label value.

[L,m,parents] = ilabel(im) as above but also returns region hierarchy information. The
value of parents(I) is the label of the parent, or enclosing, region of region I. A value
of 0 indicates that the region has no single enclosing region, for a binary image this
means the region touches the edge of the image, for a multilevel image it means that
the region touches more than one other region.

[L,maxlabel,parents,class] = ilabel(im) as above but also returns the class of pixels
within each region. The value of class(I) is the value of the pixels that comprise region
I.

[L,maxlabel,parents,class,edge] = ilabel(im) as above but also returns the edge-touch
status of each region. If edge(I) is 1 then region I touches edge of the image, otherwise
it does not.

Notes

• This algorithm is variously known as region labelling, connectivity analysis, con-
nected component analysis, blob labelling.

• All pixels within a region have the same value (or class).

• This is a “low level” function, IBLOBS is a higher level interface.

• Is a MEX file.

Machine Vision Toolbox for MATLAB
R©

96 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

• The image can be binary or greyscale.

• Connectivity is only performed in 2 dimensions.

• Connectivity is performed using 4 nearest neighbours by default.

– To use 8-way connectivity pass a second argument of 8, eg. ilabel(im, 8).

– 8-way connectivity introduces ambiguities, a chequerboard is two blobs.

See also

iblobs, imoments

iline
Draw a line in an image

out = iline(im, p1, p2) is a copy of the image im with a single-pixel thick line drawn
between the points p1 and p2, each a 2-vector [U,V]. The pixels on the line are set to
1.

out = iline(im, p1, p2, v) as above but the pixels on the line are set to v.

Notes

• Uses the Bresenham algorithm.

• Only works for greyscale images.

• The line looks jagged since no anti-aliasing is performed.

See also

bresenham, iprofile, ipaste

Machine Vision Toolbox for MATLAB
R©

97 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

im2col
Convert an image to pixel per row format

out = im2col(im) is a matrix (N ×P) where each row represents a single of the image
im (H ×W × P). The pixels are in image column order (ie. column 1, column 2 etc)
and there are N=W ×H rows.

out = im2col(im, mask) as above but only includes pixels if:

• the corresponding element of mask (H ×W) is non-zero

• the corresponding element of mask (N) is non-zero where N=H ×W

• the pixel index is included in the vector mask

See also

col2im

ImageSource
Abstract class for image sources

An abstract superclass for implementing image sources.

Methods

grab Aquire and return the next image
close Close the image source
iscolor True if image is color
size Size of image
char Convert image source parameters to human readable string
display Display image source parameters in human readable form

See also

AxisWebCamera, Video, Movie

Machine Vision Toolbox for MATLAB
R©

98 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

ImageSource.ImageSource
Image source constructor

i = ImageSource(options) is an ImageSource object that holds parameters related to
acquisition from some particular image source.

Options

‘width’, W Set image width to W
‘height’, H Set image height to H
‘uint8’ Return image with uint8 pixels (default)
‘float’ Return image with float pixels
‘double’ Return image with double precision pixels
‘grey’ Return image is greyscale
‘gamma’, G Apply gamma correction with gamma=G
‘scale’, S Subsample the image by S in both directions.

ImageSource.display
Display value

I.display() displays the state of the image source object in human readable form.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is an ImageSource object and the command has no trailing semicolon.

imatch
Template matching

xm = imatch(im1, im2, u, v, H, s) is the position of the matching subimage of im1
(template) within the image im2. The template in im1 is centred at (u,v) and its half-
width is H.

The template is searched for within im2 inside a rectangular region, centred at (u,v)
and whose size is a function of s. If s is a scalar the search region is [-s, s, -s, s] relative
to (u,v). More generally s is a 4-vector s=[umin, umax, vmin, vmax] relative to (u,v).

Machine Vision Toolbox for MATLAB
R©

99 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

The return value is xm=[DU,DV,CC] where (DU,DV) are the u- and v-offsets relative
to (u,v) and CC is the similarity score for the best match in the search region.

[xm,score] = imatch(im1, im2, u, v, H, s) as above but also returns a matrix of match-
ing score values for each template position tested. The rows correspond to horizontal
positions of the template, and columns the vertical position. The centre element corre-
sponds to (u,v).

Example

Consider a sequence of images im(:,:,N) and we find corner points in the k’th image

corners = icorner(im(:,:,k), ’nfeat’, 20);

Now, for each corner we look for the 11 × 11 patch of surrounding pixels in the next
image, by searching within a 21× 21 region

for corner=corners

xm = imatch(im(:,:,k), im(:,:,k+1), 5, 10);
if xm(3) > 0.8

fprintf(’feature (%f,%f) moved by (%f,%f) pixels)\n’, ...

corner.u, corner.v, xm(1), xm(2));

end

end

Notes

• Useful for tracking a template in an image sequence where im1 and im2 are
consecutive images in a template and (u,v) is the coordinate of a corner point in
im1.

• Is a MEX file.

• im1 and im2 must be the same size.

• ZNCC (zero-mean normalized cross correlation) matching is used as the simi-
larity measure. A perfect match score is 1.0 but anything above 0.8 is typically
considered to be a good match.

See also

isimilarity

Machine Vision Toolbox for MATLAB
R©

100 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

imeshgrid
Domain matrices for image

[u,v] = imeshgrid(im) are matrices that describe the domain of image im and can be
used for the evaluation of functions over the image. u and v are the same szie as im.
The element u(v,u) = u and v(v,u) = v.

[u,v] = imeshgrid(im, n) as above but...

[u,v] = imeshgrid(w, H) as above but the domain is w × H.

[u,v] = imeshgrid(size) as above but the domain is described size which is scalar size×
size or a 2-vector [w H].

See also

meshgrid

imoments
Image moments

f = imoments(im) is a RegionFeature object that describes the greyscale moments of
the image im.

f = imoments(u, v) as above but the moments are computed from the pixel coordinates
given as vectors u (N × 1) and v (N × 1). All pixels are equally weighted and is
effectively a binary image.

f = imoments(u, v, w) as above but the pixels have weights given by the vector w and
is effectively a greyscale image.

Properties

The RegionFeature object has many properties including:

Machine Vision Toolbox for MATLAB
R©

101 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

uc centroid, horizontal coordinate
vc centroid, vertical coordinate
area the number of pixels
a major axis length of equivalent ellipse
b minor axis length of equivalent ellipse
theta angle of major ellipse axis to horizontal axis
shape aspect ratio b/a (always <= 1.0)
moments a structure containing moments of order 0 to 2, the elements are m00, m10, m01, m20,

m02, m11.

See RegionFeature help for more details.

Notes

• For a binary image the zeroth moment is the number of non-zero pixels, or its
area.

• This function does not perform connectivity it considers all non-zero pixels in
the image. If connected regions are required then use IBLOBS instead.

See also

RegionFeature, iblobs

imono
Convert color image to monochrome

out = imono(im, options) is a greyscale equivalent to the color image im.

Options

‘r601’ ITU recommendation 601 (default)
‘r709’ ITU recommendation 709
‘value’ HSV value component

Notes

• This function returns a greyscale image whether passed a color or a greyscale
image. If a greyscale image is passed it is simply returned.

• Can convert a color image sequence (HxWx3xN) to a monochrome sequence
(H ×W ×N).

Machine Vision Toolbox for MATLAB
R©

102 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

colorize, icolor, colorspace

imorph
Morphological neighbourhood processing

out = imorph(im, se, op) is the image im after morphological processing with the
operator op and structuring element se.

The structuring element se is a small matrix with binary values that indicate which
elements of the template window are used in the operation.

The operation op is:

‘min’ minimum value over the structuring element
‘max’ maximum value over the structuring element
‘diff’ maximum - minimum value over the structuring element
‘plusmin’ the minimum of the pixel value and the pixelwise sum of the structuring element and

source neighbourhood.

out = imorph(im, se, op, edge) as above but performance of edge pixels can be con-
trolled. The value of edge is:

‘border’ the border value is replicated (default)
‘none’ pixels beyond the border are not included in the window
‘trim’ output is not computed for pixels where the structuring element crosses the image

border, hence output image had reduced dimensions.
‘wrap’ the image is assumed to wrap around, left to right, top to bottom.

Notes

• Is a MEX file.

• Performs greyscale morphology.

• The structuring element should have an odd side length.

• For binary image ‘min’ = EROSION, ‘max’ = DILATION.

• The ‘plusmin’ operation can be used to compute the distance transform.

• The input can be logical, uint8, uint16, float or double, the output is always
double

Machine Vision Toolbox for MATLAB
R©

103 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

irank, ivar, hitormiss, iopen, iclose, dtransform

imser
Maximally stable extremal regions

label = imser(im, options) is a segmentation of the greyscale image im (H × W)
based on maximally stable extremal regions. label (H × W) is an image where each
element is the integer label assigned to the corresponding pixel in im. The labels are
consecutive integers starting at zero.

[label,nreg] = imser(im, options) as above but nreg is the number of regions found,
or one plus the maximum value of label.

Options

‘dark’ looking for dark features against a light background (default)
‘light’ looking for light features against a dark background

Example

im = iread(’castle_sign2.png’, ’grey’, ’double’);
[label,n] = imser(im, ’light’);
idisp(label)

Notes

• Is a wrapper for vl mser, part of VLFeat (vlfeat.org), by Andrea Vedaldi and
Brian Fulkerson.

• vl mser is a MEX file.

Reference

“Robust wide-baseline stereo from maximally stable extremal regions”, J. Matas, O.
Chum, M. Urban, and T. Pajdla, Image and Vision Computing, vol. 22, pp. 761-767,
Sept. 2004.

Machine Vision Toolbox for MATLAB
R©

104 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

ithresh, igraphseg

inormhist
Histogram normalization

out = inormhist(im) is a histogram normalized version of the image im.

Notes

• Highlights image detail in dark areas of an image.

• The histogram of the normalized image is approximately uniform, that is, all
grey levels ae equally likely to occur.

See also

ihist

intgimage
Compute integral image

out = intimage(im) is an integral image corresponding to im.

Integral images can be used for rapid computation of summations over rectangular
regions.

Examples

Create integral images for sum of pixels over rectangular regions

i = intimage(im);

Create integral images for sum of pixel squared values over rectangular regions

i = intimage(im.ˆ2);

Machine Vision Toolbox for MATLAB
R©

105 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

iisum

invcamcal
camera calibration

c = invcamcal(C)

Decompose, or invert, a 3x4camera calibration matrix C.

The result is a camera object with the following parameters set:

f
sx, sy (with sx=1)
(u0, v0) principal point

Tcam is the homog xform of the world origin wrt camera

Since only f.sx and f.sy can be estimated we set sx = 1.

REF: Multiple View Geometry, Hartley&Zisserman, p 163-164

SEE ALSO: camera

iopen
Morphological opening

out = iopen(im, se, options) is the image im after morphological opening with the
structuring element se. This is a morphological erosion followed by dilation.

out = iopen(im, se, n, options) as above but the structuring element se is applied n
times, that is n erosions followed by n dilations.

Notes

• For binary image an opening operation can be used to eliminate small white
noise regions.

• It is cheaper to apply a smaller structuring element multiple times than one large
one, the effective structuring element is the Minkowski sum of the structuring
element with itself n times.

Machine Vision Toolbox for MATLAB
R©

106 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

• Windowing options of IMORPH can be passed. By default output image is same
size as input image.

See also

iclose, idilate, ierode, imorph

ipad
Pad an image with constants

out = ipad(im, sides, n) is a padded version of the image im with a block of NaN
values n pixels wide on the sides of im as specified by sides.

out = ipad(im, sides, n, v) as above but pads with pixels of value v.

sides is a string containing one or more of the characters:

‘t’ top
‘b’ bottom
‘l’ left
‘r’ right

Examples

Add a band of zero pixels 20 pixels high across the top of the image:

ipad(im, ’t’, 20, 0)

Add a band of white pixels 10 pixels wide on all sides of the image:

ipad(im, ’tblr’, 10, 255)

Notes

• Not a tablet computer.

Machine Vision Toolbox for MATLAB
R©

107 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

ipaste
Paste an image into an image

out = ipaste(im, im2, p, options) is the image im with the subimage im2 pasted in at
the position p=[U,V].

Options

‘centre’ The pasted image is centred at p, otherwise p is the top-left corner of the subimage in
im (default)

‘zero’ the coordinates of p start at zero, by default 1 is assumed
‘set’ im2 overwrites the pixels in im (default)
‘add’ im2 is added to the pixels in im
‘mean’ im2 is set to the mean of pixel values in im2 and im

Notes

• Pixels outside the pasted in region are unaffected.

See also

iline

ipixswitch
Pixelwise image merge

out = ipixswitch(mask, im1, im2) is an image where each pixel is selected from the
corresponding pixel in im1 or im2 according to the corresponding pixel values in mask.
If the element of mask is zero im1 is selected, otherwise im2 is selected.

im1 or im2 can contain a color descriptor which is one of:

• A scalar value corresponding to a greyscale

• A 3-vector corresponding to a color value

• A string containing the name of a color which is found using COLORNAME.

ipixswitch(mask, im1, im2) as above but the result is displayed.

Machine Vision Toolbox for MATLAB
R©

108 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Example

Read a uint8 image

im = iread(’lena.pgm’);

and set high valued pixels to red

a = ipixswitch(im>120, im, uint8([255 0 0]));

The result is a uint8 image since both arguments are uint8 images.

a = ipixswitch(im>120, im, [1 0 0]);

The result is a double precision image since the color specification is a double.

a = ipixswitch(im>120, im, ’red’);

The result is a double precision image since the result of colorname is a double preci-
sion 3-vector.

Notes

• im1, im2 and mask must all have the same number of rows and columns.

• If im1 and im2 are both greyscale then out is greyscale.

• If either of im1 and im2 are color then out is color.

• If either one image is double and one is integer then the integer image is first
converted to a double image.

See also

colorize, colorname

iprofile
Extract pixels along a line

v = iprofile(im, p1, p2) is a vector of pixel values extracted from the image im (H ×
W × P) between the points p1 (2 × 1) and p2 (2 × 1). v (N × P) has one row for
each point along the line and the row is the pixel value which will be a vector for a
multi-plane image.

[p,uv] = iprofile(im, p1, p2) as above but also returns the coordinates of the pixels
for each point along the line. Each row of uv is the pixel coordinate (u,v) for the
corresponding row of p.

Machine Vision Toolbox for MATLAB
R©

109 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• The Bresenham algorithm is used to find points along the line.

See also

bresenham, iline

ipyramid
Pyramidal image decomposition

out = ipyramid(im) is a pyramid decomposition of input image im using Gaussian
smoothing with standard deviation of 1. out is a cell array of images each one having
dimensions half that of the previous image. The pyramid is computed down to a non-
halvable image size.

out = ipyramid(im, sigma) as above but the Gaussian standard deviation is sigma.

out = ipyramid(im, sigma, n) as above but only n levels of the pyramid are computed.

Notes

• Works for greyscale images only.

See also

iscalespace, idecimate, ismooth

irank
Rank filter

out = irank(im, order, se) is a rank filtered version of im. Only pixels corresponding
to non-zero elements of the structuring element se are ranked and the order’th value in
rank becomes the corresponding output pixel value. The highest rank, the maximum,
is order=1.

Machine Vision Toolbox for MATLAB
R©

110 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

out = irank(image, se, op, nbins) as above but the number of histogram bins can be
specified.

out = irank(image, se, op, nbins, edge) as above but the processing of edge pixels can
be controlled. The value of edge is:

‘border’ the border value is replicated (default)
‘none’ pixels beyond the border are not included in the window
‘trim’ output is not computed for pixels whose window crosses the border, hence output

image had reduced dimensions.
‘wrap’ the image is assumed to wrap around left-right, top-bottom.

Examples

5× 5 median filter, 25 elements in the window, the median is the 12thn in rank

irank(im, 12, ones(5,5));

3× 3 non-local maximum, find where a pixel is greater than its eight neighbours

se = ones(3,3); se(2,2) = 0;
im > irank(im, 1, se);

Notes

• The structuring element should have an odd side length.

• Is a MEX file.

• The median is estimated from a histogram with nbins (default 256).

• The input can be logical, uint8, uint16, float or double, the output is always
double

See also

imorph, ivar, iwindow

iread
Read image from file

im = iread() presents a file selection GUI from which the user can select an image file
which is returned as a matrix. On subsequent calls the initial folder is as set on the last
call.

im = iread([], OPTIONS) as above but allows options to be specified.

Machine Vision Toolbox for MATLAB
R©

111 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

im = iread(path, options) as above but the GUI is set to the folder specified by path.
If the path is not absolute it is searched for on the MATLAB search path.

im = iread(file, options) reads the specified image file and returns a matrix. If the path
is not absolute it is searched for on MATLAB search path.

The image can be greyscale or color in any of a wide range of formats supported by the
MATLAB IMREAD function.

Wildcards are allowed in file names. If multiple files match a 3D or 4D image is
returned where the last dimension is the number of images in the sequence.

Options

‘uint8’ return an image with 8-bit unsigned integer pixels in the range 0 to 255
‘single’ return an image with single precision floating point pixels in the range 0 to 1.
‘double’ return an image with double precision floating point pixels in the range 0 to 1.
‘grey’ convert image to greyscale, if it’s color, using ITU rec 601
‘grey 709’ convert image to greyscale, if it’s color, using ITU rec 709
‘gamma’, G apply this gamma correction, either numeric or ‘sRGB’
‘reduce’, R decimate image by R in both dimensions
‘roi’, R apply the region of interest R to each image, where R=[umin umax; vmin vmax].

Examples

Read a color image and display it

>> im = iread(’lena.png’);
>> about im
im [uint8] : 512x512x3 (786.4 kB)
>> idisp(im);

Read a greyscale image sequence

>> im = iread(’seq/*.png’);
>> about im
im [uint8] : 512x512x9 (2.4 MB)
>> ianimate(im, ’loop’);

Notes

• A greyscale image is returned as an H ×W matrix

• A color image is returned as an H ×W × 3 matrix

• A greyscale image sequence is returned as an H × W × N matrix where N is
the sequence length

• A color image sequence is returned as an HxWx3xN matrix where N is the se-
quence length

Machine Vision Toolbox for MATLAB
R©

112 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

idisp, ianimate, imono, igamma, imread, imwrite, path

irectify
Rectify stereo image pair

[out1,out2] = irectify(f, m, im1, im2) is a rectified pair of images corresponding to
im1 and im2. f (3 × 3) is the fundamental matrix relating the two views and m is a
FeatureMatch object containing point correspondences between the images.

[out1,out2,h1,h2] = irectify(f, m, im1, im2) as above but also returns the homogra-
phies h1 and h2 that warp im1 to out1 and im2 to out2 respectively.

Notes

• The resulting image pair are epipolar aligned, equivalent to the view if the two
original camera axes were parallel.

• Rectified images are required for dense stereo matching.

• The effect of lense distortion is not removed, use the camera calibration toolbox
to unwarp each image prior to rectification.

• The resulting images may have negative disparity.

• Some output pixels may have no corresponding input pixels and will be set to
NaN.

See also

FeatureMatch, istereo, homwarp, CentralCamera

ireplicate
Expand image

out = ireplicate(im, k) is an expanded version of the image (H×W) where each pixel
is replicated into a k × k tile. If im is H ×W the result is (KH)x(KW).

Machine Vision Toolbox for MATLAB
R©

113 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

idecimate, iscale

iroi
Extract region of interest

out = iroi(im,rect) is a subimage of the image im described by the rectangle rect=[umin,umax;
vmin,vmax].

out = iroi(im,C,s) as above but the region is centered at C=(U,V) and has a size s. If s
is scalar then W=H=s otherwise s=(W,H).

out = iroi(im) as above but the image is displayed and the user is prompted to adjust a
rubber band box to select the region of interest.

[out,rect] = iroi(im) as above but returns the selected region of interest rect=[umin
umax;vmin vmax].

See also

idisp

irotate
Rotate image

out = irotate(im, angle, options) is a version of the image im that has been rotated
about its centre.

Options

‘outsize’, S set size of output image to H ×W where S=[W,H]
‘crop’ return central part of image, same size as im
‘scale’, S scale the image size by S (default 1)
‘extrapval’, V set background pixels to V (default 0)
‘smooth’, S initially smooth the image with a Gaussian of standard deviation S

Machine Vision Toolbox for MATLAB
R©

114 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Rotation is defined with respect to a z-axis which is into the image.

• Counter-clockwise is a positive angle.

• The pixels in the corners of the resulting image will be undefined and set to the
‘extrapval’.

See also

iscale

isamesize
Automatic image trimming

out = isamesize(im1, im2) is an image derived from im1 that has the same dimensions
as im2. This is achieved by cropping and scaling.

out = isamesize(im1, im2, bias) as above but bias controls which part of the image is
cropped. bias=0.5 is symmetric cropping, bias<0.5 moves the crop window up or to
the left, while bias>0.5 moves the crop window down or to the right.

See also

iscale, iroi, itrim

iscale
Scale an image

out = iscale(im, s) is a version of im scaled in both directions by s which is a real
scalar. s>1 makes the image larger, s<1 makes it smaller.

Machine Vision Toolbox for MATLAB
R©

115 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘outsize’, s set size of out to H ×W where s=[W,H]
‘smooth’, s initially smooth image with Gaussian of standard deviation s (default 1). s=[] for no

smoothing.

See also

ireplicate, idecimate, irotate

iscalemax
Scale space maxima

f = iscalemax(L, s) is a vector of ScalePointFeature objects which are the maxima,
in space and scale, of the Laplacian of Gaussian (LoG) scale-space image sequence L
(H ×W ×N). s (N × 1) is a vector of scale values corresponding to each plane of L.

If the pixels are considered as cubes in a larger volume, the maxima are those cubes
greater than all their 26 neighbours.

Notes

• Features are sorted into descending feature strength.

See also

iscalespace, ScalePointFeature

iscalespace
Scale-space image sequence

[g,L,s] = iscalespace(im, n, sigma) is a scale space image sequence of length n derived
from im (H × W). The standard deviation of the smoothing Gaussian is sigma. At
each scale step the variance of the Gaussian increases by sigma2. The first step in the
sequence is the original image.

Machine Vision Toolbox for MATLAB
R©

116 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

g (H × W × n) is the scale sequence, L (H × W × n) is the absolute value of the
Laplacian of Gaussian (LoG) of the scale sequence, corresponding to each step of the
sequence, and s (n × 1) is the vector of scales.

[g,L,s] = iscalespace(im, n) as above but sigma=1.

Examples

Create a scale-space image sequence

im = iread(’lena.png’, ’double’, ’grey’);
[G,L,s] = iscalespace(im, 50, 2);

Then find scale-space maxima, an array of ScalePointFeature objects.

f = iscalemax(L, s);

Look at the scalespace volume

slice(L, [], [], 5:10:50); shading interp

Notes

• The Laplacian is approximated by the the difference of adjacent Gaussians.

See also

iscalemax, ismooth, ilaplace, klog

iscolor
Test for color image

iscolor(im) is true (1) if im is a color image, that is, it its third dimension is equal to
three.

isift
SIFT feature extractor

sf = isift(im, options) is a vector of SiftPointFeature objects representing scale and
rotationally invariant interest points in the image im.

Machine Vision Toolbox for MATLAB
R©

117 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘nfeat’, N set the number of features to return (default Inf)
‘suppress’, R set the suppression radius (default 0)
‘id’, V set the image id of all features

Properties and methods

The SiftPointFeature object has many properties including:

u horizontal coordinate
v vertical coordinate
strength feature strength
descriptor feature descriptor (128× 1)
sigma feature scale
theta feature orientation [rad]
image id a value passed as an option to isift

The SiftPointFeature object has many methods including:

plot Plot feature position
plot scale Plot feature scale
distance Descriptor distance
match Match features
ncc Descriptor similarity

See SiftPointFeature and PointFeature classes for more details.

Notes

• Greyscale images only, double or integer pixel format.

• Features are returned in descending strength order.

• Wraps a MEX file from www.vlfeat.org

• Corners are processed in order from strongest to weakest.

• If im is H × W × N it is considered to be an image sequence and F is a cell
array with N elements, each of which is the feature vectors for the corresponding
image in the sequence.

• The SIFT algorithm is covered by US Patent 6,711,293 (March 23, 2004) held
by the Univerity of British Columbia.

• ISURF is a functional equivalent.

Reference

“Distinctive image features from scale-invariant keypoints”, David G. Lowe, Interna-
tional Journal of Computer Vision, 60, 2 (2004), pp. 91-110.

Machine Vision Toolbox for MATLAB
R©

118 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

SiftPointFeature, isurf, icorner

isimilarity
Locate template in image

s = isimilarity(T, im) is an image where each pixel is the ZNCC similarity of the
template T (M × M) to the M × M neighbourhood surrounding the corresonding
input pixel in im. s is same size as im.

s = isimilarity(T, im, metric) as above but the similarity metric is specified by the
function metric which can be any of @sad, @ssd, @ncc, @zsad, @zssd.

Example

Load an image of Wally/Waldo (the template)

T = iread(’wally.png’, ’double’);

then load an image of the crowd where he is hiding

crowd = iread(’wheres-wally.png’, ’double’);

Now search for him using the ZNCC matching measure

S = isimilarity(T, crowd, @zncc);

and display the similarity

idisp(S, ’colormap’, ’jet’, ’bar’)

The magnitude at each pixel indicates how well the template centred on that point
matches the surrounding pixels. The locations of the maxima are

[˜,p] = peak2(S, 1, ’npeaks’, 5);

Now we can display the original scene

idisp(crowd)

and highlight the most likely places that Wally/Waldo is hiding

plot_circle(p, 30, ’fillcolor’, ’b’, ’alpha’, 0.3, ...

’edgecolor’, ’none’)

plot_point(p, ’sequence’, ’bold’, ’textsize’, 24, ...

’textcolor’, ’k’, ’Marker’, ’none’)

Machine Vision Toolbox for MATLAB
R©

119 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

References

• Robotics, Vision & Control, Section 12.4, P. Corke, Springer 2011.

Notes

• For NCC and ZNCC the maximum in s corresponds to the most likely template
location. For SAD, SSD, ZSAD and ZSSD the minimum value corresponds to
the most likely location.

• Similarity is not computed for those pixels where the template crosses the image
boundary, and these output pixels are set to NaN.

• The ZNCC function is a MEX file and therefore the fastest

• User provided similarity metrics can be used, the function accepts two regions
and returns a scalar similarity score.

See also

imatch, sad, ssd, ncc, zsad, zssd, zncc

isize
Size of image

n = isize(im,d) is the size of the d’th dimension of im.

[w,H] = isize(im) is the image width w and height H.

wh = isize(im) is the image size wh = [w H].

[w,H,p] = isize(im) is the image width w, height H and and number of planes p. Even
if the image has only two dimensions p will be one.

Notes

• A simple convenience wrapper on the MATLAB function SIZE.

See also

size

Machine Vision Toolbox for MATLAB
R©

120 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

ismooth
Gaussian smoothing

out = ismooth(im, sigma) is the image im after convolution with a Gaussian kernel of
standard deviation sigma.

out = ismooth(im, sigma, options) as above but the options are passed to CONV2.

Options

‘full’ returns the full 2-D convolution (default)
‘same’ returns out the same size as im
‘valid’ returns the valid pixels only, those where the kernel does not exceed the bounds of the

image.

Notes

• By default (option ‘full’) the returned image is larger than the passed image.

• Smooths all planes of the input image.

• The Gaussian kernel has a unit volume.

• If input image is integer it is converted to float, convolved, then converted back
to integer.

See also

iconv, kgauss

isobel
Sobel edge detector

out = isobel(im) is an edge image computed using the Sobel edge operator applied to
the image im. This is the norm of the vertical and horizontal gradients at each pixel.
The Sobel horizontal gradient kernel is:

| -1 0 1|
| -2 0 2|
| -1 0 1|

Machine Vision Toolbox for MATLAB
R©

121 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

and the vertical gradient kernel is the transpose.

[gx,gy] = isobel(im) as above but returns the gradient images rather than the gradient
magnitude.

out = isobel(im,dx) as above but applies the kernel dx and dx’ to compute the hori-
zontal and vertical gradients respectively.

[gx,gy] = isobel(im,dx) as above but returns the gradient images rather than the gradi-
ent magnitude.

Notes

• Tends to produce quite thick edges.

• The resulting image is the same size as the input image.

• If the kernel dx is provided it can be of any size, not just 3 × 3, and could be
generated using KDGAUSS.

See also

ksobel, kdgauss, icanny, iconv

istereo
Stereo matching

d = istereo(left, right, H, range, options) is a disparity image computed from the
epipolar aligned stereo pair: the left image left (H × W) and the right image right
(H ×W). d (H ×W) is the disparity and the value at each pixel is the horizontal shift
of the corresponding pixel in IML as observed in IMR. That is, the disparity d=d(v,u)
means that the pixel at right(v,u-d) is the same world point as the pixel at left(v,u).

H is the half size of the matching window, which can be a scalar for N × N or a
2-vector [N,M] for an N ×M window.

range is the disparity search range, which can be a scalar for disparities in the range 0
to range, or a 2-vector [DMIN DMAX] for searches in the range DMIN to DMAX.

[d,sim] = istereo(iml, imr, w, range, options) as above but returns sim which is the
same size as d and the elements are the peak matching score for the corresponding
elements of d. For the default matching metric ZNCC this varies between -1 (very
bad) to +1 (perfect).

[d,sim,dsi] = istereo(iml, imr, w, range, options) as above but returns dsi which is
the disparity space image (H × w ×N) where N=DMAX-DMIN+1. The I’th plane is
the similarity of iml to imr shifted to the left by DMIN+I-1.

Machine Vision Toolbox for MATLAB
R©

122 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

[d,sim,p] = istereo(iml, imr, w, range, options) if the ‘interp’ option is given then
disparity is estimated to sub-pixel precision using quadratic interpolation. In this case
d is the interpolated disparity and p is a structure with elements A, B, dx. The interpo-
lation polynomial is s = Ad2 + Bd + C where s is the similarity score and d is disparity
relative to the integer disparity at which s is maximum. p.A and p.B are matrices the
same size as d whose elements are the per pixel values of the interpolation polynomial
coefficients. p.dx is the peak of the polynomial with respect to the integer disparity at
which s is maximum (in the range -0.5 to +0.5).

Options

‘metric’, M string that specifies the similarity metric to use which is one of ‘zncc’ (default), ‘ncc’,
‘ssd’ or ‘sad’.

‘interp’ enable subpixel interpolation and d contains non-integer values (default false)

Example

Load the left and right images

L = iread(’rocks2-l.png’, ’reduce’, 2);
R = iread(’rocks2-r.png’, ’reduce’, 2);

then compute stereo disparity and display it

d = istereo(L, R, [40, 90], 3);
idisp(d);

References

• Robotics, Vision & Control, Section 14.3, p. Corke, Springer 2011.

Notes

• Images must be greyscale.

• Disparity values pixels within a half-window dimension (H) of the edges will
not be valid and are set to NaN.

• The C term of the interpolation polynomial is not computed or returned.

• The A term is high where the disparity function has a sharp peak.

• Disparity and similarity score can be obtained from the disparity space image by
[sim,d] = max(dsi, [], 3)

Machine Vision Toolbox for MATLAB
R©

123 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

irectify, stdisp

istretch
Image normalization

out = istretch(im, options) is a normalized image in which all pixel values lie in the
range 0 to 1. That is, a linear mapping where the minimum value of im is mapped to 0
and the maximum value of im is mapped to 1.

Options

‘max’, M Pixels are mapped to the range 0 to M
‘range’, R R(1) is mapped to zero, R(2) is mapped to 1 (or max value).

Notes

• For an integer image the result is a double image in the range 0 to max value.

See also

inormhist

isurf
SURF feature extractor

sf = isurf(im, options) returns a vector of SurfPointFeature objects representing scale
and rotationally invariant interest points in the image im.

The SurfPointFeature object has many properties including:

Machine Vision Toolbox for MATLAB
R©

124 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

u horizontal coordinate
v vertical coordinate
strength feature strength
descriptor feature descriptor (64× 1 or 128× 1)
sigma feature scale
theta feature orientation [rad]

Options

‘nfeat’, N set the number of features to return (default Inf)
‘thresh’, T set Hessian threshold. Increasing the threshold reduces the number of features com-

puted and reduces computation time.
‘octaves’, N number of octaves to process (default 5)
‘extended’ return 128-element descriptor (default 64)
‘upright’ don’t compute rotation invariance
‘suppress’, R set the suppression radius (default 0). Features are not returned if they are within R

[pixels] of an earlier (stronger) feature.

Example

Load the image

im = iread(’lena.pgm’);

Find the 10 strongest SURF features

sf = isurf(im, ’nfeat’, 10);

and overlay them on the original image as blue circles

idisp(im);
sf.plot_scale()

Notes

• Color images, or sequences, are first converted to greyscale.

• Features are returned in descending strength order

• If im is H × W × N it is considered to be an image sequence and F is a cell
array with N elements, each of which is the feature vectors for the corresponding
image in the sequence.

• Wraps an M-file implementation of OpenSurf by D. Kroon (U. Twente) or a
MEX-file OpenCV wrapper by Petter Strandmark.

• The sign of the Laplacian is not retained.

• The SURF algorithm is covered by an extensive suite of international patents
including US 8,165,401, EP 1850270 held by Toyota, KU Leuven and ETHZ.
See http://www.kooaba.com/en/plans and pricing/ip licensing

Machine Vision Toolbox for MATLAB
R©

125 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Reference

“SURF: Speeded Up Robust Features”, Herbert Bay, Andreas Ess, Tinne Tuytelaars,
Luc Van Gool, Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3,
pp. 346–359, 2008

See also

SurfPointFeature, isift, icorner

ithin
Morphological skeletonization

out = ithin(im) is the binary skeleton of the binary image im. Any non-zero region is
replaced by a network of single-pixel wide lines.

out = ithin(im,delay) as above but graphically displays each iteration of the skele-
tonization algorithm with a pause of delay seconds between each iteration.

References

• Robotics, Vision & Control, Section 12.5.3, P. Corke, Springer 2011.

See also

hitormiss, itriplepoint, iendpoint

ithresh
Interactive image threshold

ithresh(im) displays the image im in a window with a slider which adjusts the binary
threshold.

ithresh(im, T) as above but the initial threshold is set to T.

im2 = ithresh(im) as above but returns the thresholded image after the “done” button
in the GUI is pressed.

Machine Vision Toolbox for MATLAB
R©

126 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

[im2,T] = ithresh(im) as above but also returns the threshold value.

Notes

• Greyscale image only.

• For a uint8 class image the slider range is 0 to 255.

• For a floating point class image the slider range is 0 to 1.0

• The GUI only displays the “done” button if output arguments are requested,
otherwise the threshold window operates independently.

See also

idisp

itrim
Trim images

This function has two different modes of functionality.

out = itrim(im, sides, n) is the image im with n pixels removed from the image sides
as specified by sides which is a string containing one or more of the characters:

‘t’ top
‘b’ bottom
‘l’ left
‘r’ right

[out1,out2] = itrim(im1,im2) returns the central parts of images im1 and im2 as out1
and out2 respectively. When images are rectified or warped the shapes can become
quite distorted and are embedded in rectangular images surrounded by black of NaN
values. This function crops out the central rectangular region of each. It assumes that
the undefined pixels in im1 and im2 have values of NaN. The same cropping is applied
to each input image.

[out1,out2] = itrim(im1,im2,T) as above but the threshold T in the range 0 to 1 is
used to adjust the level of cropping. The default is 0.5, a higher value will include
fewer NaN value in the result (smaller region), a lower value will include more (larger
region). A value of 0 will ensure that there are no NaN values in the returned region.

Machine Vision Toolbox for MATLAB
R©

127 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

homwarp, irectify

itriplepoint
Find triple points

out = itriplepoint(im) is a binary image where pixels are set if the corresponding
pixel in the binary image im is a triple point, that is where three single-pixel wide
line intersect. These are the Voronoi points in an image skeleton. Computed using the
hit-or-miss morphological operator.

References

• Robotics, Vision & Control, Section 12.5.3, P. Corke, Springer 2011.

See also

iendpoint, ithin, hitormiss

ivar
Pixel window statistics

out = ivar(im, se, op) is an image where each output pixel is the specified statistic over
the pixel neighbourhood indicated by the structuring element se which should have odd
side lengths. The elements in the neighbourhood corresponding to non-zero elements
in se are packed into a vector on which the required statistic is computed.

The operation op is one of:

‘var’ variance
‘kurt’ Kurtosis or peakiness of the distribution
‘skew’ skew or asymmetry of the distribution

out = ivar(im, se, op, edge) as above but performance at edge pixels can be controlled.
The value of edge is:

Machine Vision Toolbox for MATLAB
R©

128 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

‘border’ the border value is replicated (default)
‘none’ pixels beyond the border are not included in the window
‘trim’ output is not computed for pixels whose window crosses the border, hence output

image had reduced dimensions.
‘wrap’ the image is assumed to wrap around

Notes

• Is a MEX file.

• The structuring element should have an odd side length.

• The input can be logical, uint8, uint16, float or double, the output is always
double

See also

irank, iwindow

iwindow
Generalized spatial operator

out = iwindow(im, se, func) is an image where each pixel is the result of applying the
function func to a neighbourhood centred on the corresponding pixel in im. The neigh-
bourhood is defined by the size of the structuring element se which should have odd
side lengths. The elements in the neighbourhood corresponding to non-zero elements
in se are packed into a vector (in column order from top left) and passed to the specified
function handle func. The return value becomes the corresponding pixel value in out.

out = iwindow(image, se, func, edge) as above but performance of edge pixels can be
controlled. The value of edge is:

‘border’ the border value is replicated (default)
‘none’ pixels beyond the border are not included in the window
‘trim’ output is not computed for pixels whose window crosses the border, hence output

image had reduced dimensions.
‘wrap’ the image is assumed to wrap around

Example

Compute the maximum value over a 5× 5 window:

iwindow(im, ones(5,5), @max);

Machine Vision Toolbox for MATLAB
R©

129 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Compute the standard deviation over a 3× 3 window:

iwindow(im, ones(3,3), @std);

Notes

• Is a MEX file.

• The structuring element should have an odd side length.

• Is slow since the function func must be invoked once for every output pixel.

• The input can be logical, uint8, uint16, float or double, the output is always
double

See also

ivar, irank

kcircle
Circular structuring element

k = kcircle(R) is a square matrix (W ×W) where W=2R+1 of zeros with a maximal
centred circular region of radius R pixels set to one.

k = kcircle(R,w) as above but the dimension of the kernel is explicitly specified.

Notes

• If R is a 2-element vector the result is an annulus of ones, and the two numbers
are interpretted as inner and outer radii.

See also

ones, ktriangle, imorph

Machine Vision Toolbox for MATLAB
R©

130 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

kdgauss
Derivative of Gaussian kernel

k = kdgauss(sigma) is a 2-dimensional derivative of Gaussian kernel (W × W) of
width (standard deviation) sigma and centred within the matrix k whose half-width H
= 3× sigma and W=2×H+1.

k = kdgauss(sigma, H) as above but the half-width is explictly specified.

Notes

• This kernel is the horizontal derivative of the Gaussian, dG/dx.

• The vertical derivative, dG/dy, is k’.

• This kernel is an effective edge detector.

See also

kgauss, kdog, klog, isobel, iconv

kdog
Difference of Gaussian kernel

k = kdog(sigma1) is a 2-dimensional difference of Gaussian kernel equal to KGAUSS(sigma1)
- KGAUSS(SIGMA2), where sigma1 > SIGMA2. By default SIGMA2 = 1.6*sigma1.
The kernel is centred within the matrix k whose half-width H = 3 × SIGMA and
W=2×H+1.

k = kdog(sigma1, sigma2) as above but sigma2 is specified directly.

k = kdog(sigma1, sigma2, H) as above but the kernel half-width is specified.

Notes

• This kernel is similar to the Laplacian of Gaussian and is often used as an effi-
cient approximation.

Machine Vision Toolbox for MATLAB
R©

131 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

kgauss, kdgauss, klog, iconv

kgauss
Gaussian kernel

k = kgauss(sigma) is a 2-dimensional Gaussian kernel of standard deviation sigma,
and centred within the matrix k whose half-width is H=2× sigma and W=2×H+1.

k = kgauss(sigma, H) as above but the half-width H is specified.

Notes

• The volume under the Gaussian kernel is one.

See also

kdgauss, kdog, klog, iconv

klaplace
Laplacian kernel

k = klaplace() is the Laplacian kernel:

|0 1 0|
|1 -4 1|
|0 1 0|

Notes

• This kernel has an isotropic response to image gradient.

Machine Vision Toolbox for MATLAB
R©

132 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

ilaplace, iconv

klog
Laplacian of Gaussian kernel

k = klog(sigma) is a 2-dimensional Laplacian of Gaussian kernel of width (standard
deviation) sigma and centred within the matrix k whose half-width is H=3 × sigma,
and W=2×H+1.

k = klog(sigma, H) as above but the half-width H is specified.

See also

kgauss, kdog, kdgauss, iconv, zcross

kmeans
K-means clustering

[L,C] = kmeans(x, k, options) is a k-means clustering of multi-dimensional data
points x (D×N) where N is the number of points, and D is the dimension. The data is
organized into k clusters based on Euclidean distance from cluster centres C (D×k). L
is a vector (N × 1) whose elements indicates which cluster the corresponding element
of x belongs to.

[L,C] = kmeans(x, k, c0) as above but the initial clusters c0 (D × k) is given and
column I is the initial estimate of the centre of cluster I.

L = kmeans(x, C) is similar to above but the clustering step is not performed, it is
assumed to have been completed previously. C (D × k) contains the cluster centroids
and L (N × 1) indicates which cluster the corresponding element of x is closest to.

Options

‘random’ initial cluster centres are chosen randomly from the set of data points x
‘spread’ initial cluster centres are chosen randomly from within the hypercube spanned by x.

Machine Vision Toolbox for MATLAB
R©

133 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Reference

“Pattern Recognition Principles”, Tou and Gonzalez, Addison-Wesley 1977, pp 94

ksobel
Sobel edge detector

k = ksobel() is the Sobel x-derivative kernel:

|-1 0 1|
|-2 0 2|
|-1 0 1|

Notes

• This kernel is an effective horizontal edge detector

• The Sobel vertical derivative is k’

See also

isobel

ktriangle
Triangular kernel

k = ktriangle(w) is a triangular kernel within a rectangular matrix k. The dimensions
k are w × w if w is scalar or w(1) wide and w(2) high. The triangle is isocles and is
full width at the bottom row of the kernel and with its apex in the top row.

Examples

>> ktriangle(3)
ans =
|0 1 0|
|0 1 0|
|1 1 1|

Machine Vision Toolbox for MATLAB
R©

134 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

kcircle

lambda2rg
RGB chromaticity coordinates

rgb = lambda2rg(lambda) is the rg-chromaticity coordinate (1×2) for illumination at
the specific wavelength lambda [m]. If lambda is a vector (N×1), then P (N×2) is a
vector whose elements are the chromaticity coordinates at the corresponding elements
of lambda.

rgb = lambda2rg(lambda, E) is the rg-chromaticity coordinate (1 × 2) for an illumi-
nation spectrum E (N × 1) defined at corresponding wavelengths lambda (N × 1).

References

• Robotics, Vision & Control, Section 10.2, P. Corke, Springer 2011.

See also

cmfrgb, lambda2xy

lambda2xy
= LAMBDA2XY(LAMBDA) is the xy-chromaticity coordinate
(1× 2) for

illumination at the specific wavelength LAMBDA [metres]. If LAMBDA is a vector
(N × 1), then P (N × 2) is a vector whose elements are the luminosity at the corre-
sponding elements of LAMBDA.

xy = lambda2xy(lambda, E) is the rg-chromaticity coordinate (1× 2) for an illumina-
tion spectrum E (N × 1) defined at corresponding wavelengths lambda (N × 1).

References

• Robotics, Vision & Control, Section 10.2, P. Corke, Springer 2011.

Machine Vision Toolbox for MATLAB
R©

135 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

cmfxyz, lambda2rg

LineFeature
Line feature class

This class represents a line feature.

Methods

plot Plot the line segment
seglength Determine length of line segment
display Display value
char Convert value to string

Properties

rho Offset of the line
theta Orientation of the line
strength Feature strength
length Length of the line

Properties of a vector of LineFeature objects are returned as a vector. If L is a vector
(N × 1) of LineFeature objects then L.rho is an N × 1 vector of the rho element of
each feature.

Note

• LineFeature is a reference object.

• LineFeature objects can be used in vectors and arrays

See also

Hough, RegionFeature, PointFeature

Machine Vision Toolbox for MATLAB
R©

136 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

LineFeature.LineFeature
Create a line feature object

L = LineFeature() is a line feature object with null parameters.

L = LineFeature(rho, theta, strength) is a line feature object with the specified prop-
erties. LENGTH is undefined.

L = LineFeature(rho, theta, strength, length) is a line feature object with the speci-
fied properties.

L = LineFeature(l2) is a deep copy of the line feature l2.

LineFeature.char
Convert to string

s = L.char() is a compact string representation of the line feature. If L is a vector then
the string has multiple lines, one per element.

LineFeature.display
Display value

L.display() displays a compact human-readable representation of the feature. If L is a
vector then the elements are printed one per line.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a LineFeature object and the command has no trailing semicolon.

See also

LineFeature.char

Machine Vision Toolbox for MATLAB
R©

137 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

LineFeature.plot
Plot line

L.plot() overlay the line on current plot.

L.plot(ls) as above but the optional line style arguments ls are passed to plot.

Notes

• If L is a vector then each element is plotted.

LineFeature.points
Return points on line segments

p = L.points(edge) is the set of points that lie along the line in the edge image edge
are determined.

See also

icanny

LineFeature.seglength
Compute length of line segments

The Hough transform identifies lines but cannot determine their length. This method
examines the edge pixels in the original image and determines the longest stretch of
non-zero pixels along the line.

l2 = L.seglength(edge, gap) is a copy of the line feature object with the property length
updated to the length of the line (pixels). Small gaps, less than gap pixels are tolerated.

l2 = L.seglength(edge) as above but the maximum allowable gap is 5 pixels.

See also

icanny

Machine Vision Toolbox for MATLAB
R©

138 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

loadspectrum
Load spectrum data

s = loadspectrum(lambda, filename) is spectral data (N × D) from file filename
interpolated to wavelengths [metres] specified in lambda (N × 1). The spectral data
can be scalar (D=1) or vector (D>1) valued.

[s,lambda] = loadspectrum(lambda, filename) as above but also returns the passed
wavelength lambda.

Notes

• The file is assumed to have its first column as wavelength in metres, the remaind-
ing columns are linearly interpolated and returned as columns of s.

• The files are kept in the private folder inside the MVTB folder.

References

• Robotics, Vision & Control, Section 14.3, P. Corke, Springer 2011.

luminos
Photopic luminosity function

p = luminos(lambda) is the photopic luminosity function for the wavelengths in lambda
[m]. If lambda is a vector (N × 1), then p (N × 1) is a vector whose elements are the
luminosity at the corresponding elements of lambda.

Luminosity has units of lumens which are the intensity with which wavelengths are
perceived by the light-adapted human eye.

References

• Robotics, Vision & Control, Section 10.1, p. Corke, Springer 2011.

See also

rluminos

Machine Vision Toolbox for MATLAB
R©

139 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

mkcube
Create cube

p = mkcube(s, options) is a set of points (3 × 8) that define the vertices of a cube of
side length s and centred at the origin.

[x,y,z] = mkcube(s, options) as above but return the rows of p as three vectors.

[x,y,z] = mkcube(s, ‘edge’, options) is a mesh that defines the edges of a cube.

Options

‘facepoint’ Add an extra point in the middle of each face, in this case the returned value is 3× 14
(8 vertices + 6 face centres).

‘centre’, C The cube is centred at C (3× 1) not the origin
‘T’, T The cube is arbitrarily transformed by the homogeneous transform T
‘edge’ Return a set of cube edges in MATLAB mesh format rather than points.

See also

cylinder, sphere

mkgrid
Create grid of points

p = mkgrid(d, s, options) is a set of points (3 x d2) that define a d × d planar grid of
points with side length s. The points are the columns of p. If d is a 2-vector the grid is
d(1)xD(2) points. If s is a 2-vector the side lengths are s(1)xS(2).

By default the grid lies in the XY plane, symmetric about the origin.

Options

‘T’, T the homogeneous transform T is applied to all points, allowing the plane to be trans-
lated or rotated.

Machine Vision Toolbox for MATLAB
R©

140 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

mlabel
for mplot style graph

mlabel(lab1 lab2 lab3)

morphdemo
Demonstrate morphology using animation

morphdemo(im, se, options) displays an animation to show the principles of the math-
ematical morphology operations dilation or erosion. Two windows are displayed side
by side, input binary image on the left and output image on the right. The structuring
element moves over the input image and is colored red if the result is zero, else blue.
Pixels in the output image are initially all grey but change to black or white as the
structuring element moves.

out = morphdemo(im, se, options) as above but returns the output image.

Options

‘dilate’ Perform morphological dilation
‘erode’ Perform morphological erosion
‘delay’ Time between animation frames (default 0.5s)
‘scale’, S Scale factor for output image (default 64)
‘movie’, M Write image frames to the folder M

Notes

• This is meant for small images, say 10× 10 pixels.

See also

imorph, idilate, ierode

Machine Vision Toolbox for MATLAB
R©

141 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Movie
Class to read movie file

A concrete subclass of ImageSource that acquires images from a web camera built by
Axis Communications (www.axis.com).

Methods

grab Aquire and return the next image
size Size of image
close Close the image source
char Convert the object parameters to human readable string

Properties

curFrame The index of the frame just read
totalDuration The running time of the movie (seconds)

See also

ImageSource, Video

SEE ALSO: Video

Movie.Movie
Image source constructor

m = Movie(file, options) is an Movie object that returns frames from the movie file
file.

Options

‘uint8’ Return image with uint8 pixels (default)
‘float’ Return image with float pixels
‘double’ Return image with double precision pixels
‘grey’ Return greyscale image
‘gamma’, G Apply gamma correction with gamma=G
‘scale’, S Subsample the image by S in both directions
‘skip’, S Read every S’th frame from the movie

Machine Vision Toolbox for MATLAB
R©

142 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Movie.char
Convert to string

M.char() is a string representing the state of the movie object in human readable form.

Movie.close
Close the image source

M.close() closes the connection to the movie.

Movie.grab
Acquire next frame from movie

im = M.grab() acquires the next image from the movie

im = M.grab(options) as above but allows the next frame to be specified.

Options

‘skip’, S Skip frames, and return current+S frame
‘frame’, F Return frame F within the movie

Notes

• If no output argument given the image is displayed using IDISP.

mplot
multiple data

Plot y versus t in multiple windows.

MPLOT(y)
MPLOT(y, n)
MPLOT(y, n, {labels})

Machine Vision Toolbox for MATLAB
R©

143 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Where y is multicolumn data and first column is time. n is a row vector specifying
which variables to plot (1 is first data column, or y(:,2)). labels is a cell array of labels
for the subplots.

MPLOT(t, y)
MPLOT(t, y, n)
MPLOT(t, y, {labels})

Where y is multicolumn data and t is time. n is a row vector specifying which variables
to plot (1 is first data column, or y(:,2)). labels is a cell array of labels for the subplots.

MPLOT(S)

Where S is a structure and one element ‘t’ is assumed to be time. Plot

all other vectors versus time in subplots. Subplots are labelled as per the data fields.

mpq
Image moments

m = mpq(im, p, q) is the PQ’th moment of the image im. That is, the sum of
I(x,y).xp.yq.

See also

mpq poly, npq, upq

mpq poly
Polygon moments

m = mpq poly(v, p, q) is the PQ’th moment of the polygon with vertices described by
the columns of v.

Notes

• The points must be sorted such that they follow the perimeter in sequence (counter-
clockwise).

• If the points are clockwise the moments will all be negated, so centroids will be
still be correct.

Machine Vision Toolbox for MATLAB
R©

144 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

• If the first and last point in the list are the same, they are considered to be a single
vertex.

See also

mpq, npq poly, upq poly, Polygon

mtools
simple/useful tools to all windows in figure

ncc
Normalized cross correlation

m = ncc(i1, i2) is the normalized cross-correlation between the two equally sized image
patches i1 and i2. The result m is a scalar in the interval -1 (non match) to 1 (perfect
match) that indicates similarity.

Notes

• A value of 1 indicates identical pixel patterns.

• The ncc similarity measure is invariant to scale changes in image intensity.

See also

zncc, sad, ssd, isimilarity

Machine Vision Toolbox for MATLAB
R©

145 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

niblack
Adaptive thresholding

T = niblack(im, k, w2) is the per-pixel (local) threshold to apply to image im. T has
the same dimensions as im. The threshold at each pixel is a function of the mean and
standard deviation computed over a W ×W window, where W=2*w2+1.

[T,m,s] = niblack(im, k, w2) as above but returns the per-pixel mean m and standard
deviation s.

Example

t = niblack(im, -0.2, 20);
idisp(im >= t);

Notes

• This is an efficient algorithm very well suited for binarizing text.

• w2 should be chosen to be half the “size” of the features to be segmented, for
example, in text segmentation, the height of a character.

• A common choice of k=-0.2

Reference

An Introduction to Digital Image Processing, W. niblack, Prentice-Hall, 1986.

See also

otsu, ithresh

npq
Normalized central image moments

m = npq(im, p, q) is the PQ’th normalized central moment of the image im. That is
UPQ(im,p,q)/MPQ(im,0,0).

Machine Vision Toolbox for MATLAB
R©

146 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• The normalized central moments are invariant to translation and scale.

See also

npq poly, mpq, upq

npq poly
Normalized central polygon moments

m = npq poly(v, p, q) is the PQ’th normalized central moment of the polygon with
vertices described by the columns of v.

Notes

• The points must be sorted such that they follow the perimeter in sequence (counter-
clockwise).

• If the points are clockwise the moments will all be negated, so centroids will be
still be correct.

• If the first and last point in the list are the same, they are considered as a single
vertex.

• The normalized central moments are invariant to translation and scale.

See also

mpq poly, mpq, npq, upq, Polygon

numcols
Return number of columns in matrix

nc = numcols(m) is the number of columns in the matrix m.

Machine Vision Toolbox for MATLAB
R©

147 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

numrows

numrows
Return number of rows in matrix

nr = numrows(m) is the number of rows in the matrix m.

See also

numcols

otsu
Threshold selection

T = otsu(im) is an optimal threshold for binarizing an image with a bimodal intensity
histogram. T is a scalar threshold that maximizes the variance between the classes of
pixels below and above the thresold T.

Example

t = otsu(im);
idisp(im >= t);

Notes

• Performance for images with non-bimodal histograms can be quite poor.

Reference

A Threshold Selection Method from Gray-Level Histograms, N. otsu IEEE Trans. Sys-
tems, Man and Cybernetics Vol SMC-9(1), Jan 1979, pp 62-66

Machine Vision Toolbox for MATLAB
R©

148 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

niblack, ithresh

peak
Find peaks in vector

yp = peak(y, options) are the values of the maxima in the vector y.

[yp,i] = peak(y, options) as above but also returns the indices of the maxima in the
vector y.

[yp,xp] = peak(y, x, options) as above but also returns the corresponding x-coordinates
of the maxima in the vector y. x is the same length of y and contains the corresponding
x-coordinates.

Options

‘npeaks’, N Number of peaks to return (default all)
‘scale’, S Only consider as peaks the largest value in the horizontal range +/- S points.
‘interp’, N Order of interpolation polynomial (default no interpolation)
‘plot’ Display the interpolation polynomial overlaid on the point data

Notes

• To find minima, use peak(-V).

• The interp options fits points in the neighbourhood about the peak with an N’th
order polynomial and its peak position is returned. Typically choose N to be
odd.

See also

peak2

Machine Vision Toolbox for MATLAB
R©

149 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

peak2
Find peaks in a matrix

zp = peak2(z, options) are the peak values in the 2-dimensional signal z.

[zp,ij] = peak2(z, options) as above but also returns the indices of the maxima in the
matrix z. Use SUB2IND to convert these to row and column coordinates

Options

‘npeaks’, N Number of peaks to return (default all)
‘scale’, S Only consider as peaks the largest value in the horizontal and vertical range +/- S

points.
‘interp’ Interpolate peak (default no interpolation)
‘plot’ Display the interpolation polynomial overlaid on the point data

Notes

• To find minima, use peak2(-V).

• The interp options fits points in the neighbourhood about the peak with a paraboloid
and its peak position is returned.

See also

peak, sub2ind

PGraph
Graph class

g = PGraph() create a 2D, planar, undirected graph
g = PGraph(n) create an n-d, undirected graph

Provides support for graphs that:

• are undirected

• are embedded in coordinate system

• have symmetric cost edges (A to B is same cost as B to A)

• have no loops (edges from A to A)

Machine Vision Toolbox for MATLAB
R©

150 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

• have vertices are represented by integers vid

• have edges are represented by integers, eid

Methods

Constructing the graph

g.add node(coord) add vertex, return vid
g.add edge(v1, v2) add edge from v1 to v2, return eid
g.setcost(e, c) set cost for edge e
g.setdata(v, u) set user data for vertex v
g.data(v) get user data for vertex v
g.clear() remove all vertices and edges from the graph

Information from graph

g.edges(v) list of edges for vertex v
g.cost(e) cost of edge e
g.neighbours(v) neighbours of vertex v
g.component(v) component id for vertex v
g.connectivity() number of edges for all vertices

Display

g.plot() set goal vertex for path planning
g.highlight node(v) highlight vertex v
g.highlight edge(e) highlight edge e
g.highlight component(c) highlight all nodes in component c
g.highlight path(p) highlight nodes and edge along path p

g.pick(coord) vertex closest to coord

g.char() convert graph to string
g.display() display summary of graph

Matrix representations

g.adjacency() adjacency matrix
g.incidence() incidence matrix
g.degree() degree matrix
g.laplacian() Laplacian matrix

Machine Vision Toolbox for MATLAB
R©

151 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Planning paths through the graph

g.Astar(s, g) shortest path from s to g
g.goal(v) set goal vertex, and plan paths
g.path(v) list of vertices from v to goal

Graph and world points

g.coord(v) coordinate of vertex v
g.distance(v1, v2) distance between v1 and v2
g.distances(coord) return sorted distances from coord to all vertices
g.closest(coord) vertex closest to coord

Object properties (read only)

g.n number of vertices
g.ne number of edges
g.nc number of components

Notes

• Graph connectivity is maintained by a labeling algorithm and this is updated
every time an edge is added.

• Nodes and edges cannot be deleted.

PGraph.PGraph
Graph class constructor

g=PGraph(d, options) is a graph object embedded in d dimensions.

Options

‘distance’, M Use the distance metric M for path planning which is either ‘Euclidean’ (default) or
‘SE2’.

‘verbose’ Specify verbose operation

Machine Vision Toolbox for MATLAB
R©

152 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Note

• Number of dimensions is not limited to 2 or 3.

• The distance metric ‘SE2’ is the sum of the squares of the difference in position
and angle modulo 2pi.

• To use a different distance metric create a subclass of PGraph and override the
method distance metric().

PGraph.add edge
Add an edge

E = G.add edge(v1, v2) adds an edge between vertices with id v1 and v2, and returns
the edge id E. The edge cost is the distance between the vertices.

E = G.add edge(v1, v2, C) as above but the edge cost is C. cost C.

Note

• Graph connectivity is maintained by a labeling algorithm and this is updated
every time an edge is added.

See also

PGraph.add node

PGraph.add node
Add a node

v = G.add node(x) adds a node/vertex with coordinate x (D×1) and returns the integer
node id v.

v = G.add node(x, v2) as above but connected by an edge to vertex v2 with cost equal
to the distance between the vertices.

v = G.add node(x, v2, C) as above but the added edge has cost C.

See also

PGraph.add edge, PGraph.data, PGraph.getdata

Machine Vision Toolbox for MATLAB
R©

153 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.adjacency
Adjacency matrix of graph

a = G.adjacency() is a matrix (N ×N) where element a(i,j) is the cost of moving from
vertex i to vertex j.

Notes

• Matrix is symmetric.

• Eigenvalues of a are real and are known as the spectrum of the graph.

• The element a(I,J) can be considered the number of walks of one edge from
vertex I to vertex J (either zero or one). The element (I,J) of aN are the number
of walks of length N from vertex I to vertex J.

See also

PGraph.degree, PGraph.incidence, PGraph.laplacian

PGraph.Astar
path finding

path = G.Astar(v1, v2) is the lowest cost path from vertex v1 to vertex v2. path is a
list of vertices starting with v1 and ending v2.

[path,C] = G.Astar(v1, v2) as above but also returns the total cost of traversing path.

Notes

• Uses the efficient A* search algorithm.

References

• Correction to “A Formal Basis for the Heuristic Determination of Minimum Cost
Paths”. Hart, P. E.; Nilsson, N. J.; Raphael, B. SIGART Newsletter 37: 28-29,
1972.

Machine Vision Toolbox for MATLAB
R©

154 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

PGraph.goal, PGraph.path

PGraph.char
Convert graph to string

s = G.char() is a compact human readable representation of the state of the graph
including the number of vertices, edges and components.

PGraph.clear
Clear the graph

G.clear() removes all vertices, edges and components.

PGraph.closest
Find closest vertex

v = G.closest(x) is the vertex geometrically closest to coordinate x.

[v,d] = G.closest(x) as above but also returns the distance d.

See also

PGraph.distances

PGraph.component
Graph component

C = G.component(v) is the id of the graph component

Machine Vision Toolbox for MATLAB
R©

155 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.connectivity
Graph connectivity

C = G.connectivity() is a vector (N × 1) with the number of edges per vertex.

The average vertex connectivity is

mean(g.connectivity())

and the minimum vertex connectivity is

min(g.connectivity())

PGraph.coord
Coordinate of node

x = G.coord(v) is the coordinate vector (D × 1) of vertex id v.

PGraph.cost
Cost of edge

C = G.cost(E) is the cost of edge id E.

PGraph.data
Get user data for node

u = G.data(v) gets the user data of vertex v which can be of any type such as number,
struct, object or cell array.

See also

PGraph.setdata

Machine Vision Toolbox for MATLAB
R©

156 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.degree
Degree matrix of graph

d = G.degree() is a diagonal matrix (N × N) where element d(i,i) is the number of
edges connected to vertex id i.

See also

PGraph.adjacency, PGraph.incidence, PGraph.laplacian

PGraph.display
Display graph

G.display() displays a compact human readable representation of the state of the graph
including the number of vertices, edges and components.

See also

PGraph.char

PGraph.distance
Distance between vertices

d = G.distance(v1, v2) is the geometric distance between the vertices v1 and v2.

See also

PGraph.distances

PGraph.distances
Distances from point to vertices

d = G.distances(x) is a vector (1×N) of geometric distance from the point x (d × 1)
to every other vertex sorted into increasing order.

Machine Vision Toolbox for MATLAB
R©

157 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

[d,w] = G.distances(p) as above but also returns w (1 × N) with the corresponding
vertex id.

See also

PGraph.closest

PGraph.edges
Find edges given vertex

E = G.edges(v) return the id of all edges from vertex id v.

PGraph.get.n
Number of vertices

G.n is the number of vertices in the graph.

See also

PGraph.ne

PGraph.get.nc
Number of components

G.nc is the number of components in the graph.

See also

PGraph.component

Machine Vision Toolbox for MATLAB
R©

158 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.get.ne
Number of edges

G.ne is the number of edges in the graph.

See also

PGraph.n

PGraph.goal
Set goal node

G.goal(vg) computes the cost of reaching every vertex in the graph connected to the
goal vertex vg.

Notes

• Combined with G.path performs a breadth-first search for paths to the goal.

See also

PGraph.path, PGraph.Astar

PGraph.highlight component
Highlight a graph component

G.highlight component(C, options) highlights the vertices that belong to graph com-
ponent C.

Options

‘NodeSize’, S Size of vertex circle (default 12)
‘NodeFaceColor’, C Node circle color (default yellow)
‘NodeEdgeColor’, C Node circle edge color (default blue)

Machine Vision Toolbox for MATLAB
R©

159 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

PGraph.highlight node, PGraph.highlight edge, PGraph.highlight component

PGraph.highlight edge
Highlight a node

G.highlight edge(v1, v2) highlights the edge between vertices v1 and v2.

G.highlight edge(E) highlights the edge with id E.

Options

‘EdgeColor’, C Edge edge color (default black)
‘EdgeThickness’, T Edge thickness (default 1.5)

See also

PGraph.highlight node, PGraph.highlight path, PGraph.highlight component

PGraph.highlight node
Highlight a node

G.highlight node(v, options) highlights the vertex v with a yellow marker. If v is a
list of vertices then all are highlighted.

Options

‘NodeSize’, S Size of vertex circle (default 12)
‘NodeFaceColor’, C Node circle color (default yellow)
‘NodeEdgeColor’, C Node circle edge color (default blue)

See also

PGraph.highlight edge, PGraph.highlight path, PGraph.highlight component

Machine Vision Toolbox for MATLAB
R©

160 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.highlight path
Highlight path

G.highlight path(p, options) highlights the path defined by vector p which is a list of
vertices comprising the path.

Options

‘NodeSize’, S Size of vertex circle (default 12)
‘NodeFaceColor’, C Node circle color (default yellow)
‘NodeEdgeColor’, C Node circle edge color (default blue)
‘EdgeColor’, C Node circle edge color (default black)

See also

PGraph.highlight node, PGraph.highlight edge, PGraph.highlight component

PGraph.incidence
Incidence matrix of graph

in = G.incidence() is a matrix (N ×NE) where element in(i,j) is non-zero if vertex id
i is connected to edge id j.

See also

PGraph.adjacency, PGraph.degree, PGraph.laplacian

PGraph.laplacian
Laplacian matrix of graph

L = G.laplacian() is the Laplacian matrix (N ×N) of the graph.

Notes

• L is always positive-semidefinite.

• L has at least one zero eigenvalue.

Machine Vision Toolbox for MATLAB
R©

161 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

• The number of zero eigenvalues is the number of connected components in the
graph.

See also

PGraph.adjacency, PGraph.incidence, PGraph.degree

PGraph.merge
the dominant and submissive labels

PGraph.neighbours
Neighbours of a vertex

n = G.neighbours(v) is a vector of ids for all vertices which are directly connected
neighbours of vertex v.

[n,C] = G.neighbours(v) as above but also returns a vector C whose elements are the
edge costs of the paths corresponding to the vertex ids in n.

PGraph.path
Find path to goal node

p = G.path(vs) is a vector of vertex ids that form a path from the starting vertex vs to
the previously specified goal. The path includes the start and goal vertex id.

To compute path to goal vertex 5

g.goal(5);

then the path, starting from vertex 1 is

p1 = g.path(1);

and the path starting from vertex 2 is

p2 = g.path(2);

Notes

• Pgraph.goal must have been invoked first.

• Can be used repeatedly to find paths from different starting points to the goal
specified to Pgraph.goal().

Machine Vision Toolbox for MATLAB
R©

162 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

PGraph.goal, PGraph.Astar

PGraph.pick
Graphically select a vertex

v = G.pick() is the id of the vertex closest to the point clicked by the user on a plot of
the graph.

See also

PGraph.plot

PGraph.plot
Plot the graph

G.plot(opt) plots the graph in the current figure. Nodes are shown as colored circles.

Options

‘labels’ Display vertex id (default false)
‘edges’ Display edges (default true)
‘edgelabels’ Display edge id (default false)
‘NodeSize’, S Size of vertex circle (default 8)
‘NodeFaceColor’, C Node circle color (default blue)
‘NodeEdgeColor’, C Node circle edge color (default blue)
‘NodeLabelSize’, S Node label text sizer (default 16)
‘NodeLabelColor’, C Node label text color (default blue)
‘EdgeColor’, C Edge color (default black)
‘EdgeLabelSize’, S Edge label text size (default black)
‘EdgeLabelColor’, C Edge label text color (default black)
‘componentcolor’ Node color is a function of graph component

Machine Vision Toolbox for MATLAB
R©

163 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.setcost
Set cost of edge

G.setcost(E, C) set cost of edge id E to C.

PGraph.setdata
Set user data for node

G.setdata(v, u) sets the user data of vertex v to u which can be of any type such as
number, struct, object or cell array.

See also

PGraph.data

PGraph.vertices
Find vertices given edge

v = G.vertices(E) return the id of the vertices that define edge E.

plot2
Plot trajectories

plot2(p) plots a line with coordinates taken from successive rows of p. p can be N × 2
or N × 3.

If p has three dimensions, ie. N × 2 ×M or N × 3 ×M then the M trajectories are
overlaid in the one plot.

plot2(p, ls) as above but the line style arguments ls are passed to plot.

Machine Vision Toolbox for MATLAB
R©

164 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

plot

plot arrow
Plot arrow

plot arrow(p, options) draws an arrow from P1 to P2 where p=[P1; P2].

See also

arrow3

plot box
a box on the current plot

plot box(b, ls) draws a box defined by b=[XL XR; YL YR] with optional Matlab
linestyle options ls.

plot box(x1,y1, x2,y2, ls) draws a box with corners at (x1,y1) and (x2,y2), and optional
Matlab linestyle options ls.

plot box(’centre’, P, ‘size’, W, ls) draws a box with center at P=[X,Y] and with dimen-
sions W=[WIDTH HEIGHT].

plot box(’topleft’, P, ‘size’, W, ls) draws a box with top-left at P=[X,Y] and with di-
mensions W=[WIDTH HEIGHT].

plot circle
Draw a circle on the current plot

plot circle(C, R, options) draws a circle on the current plot with centre C=[X,Y] and
radius R. If C=[X,Y,Z] the circle is drawn in the XY-plane at height Z.

Machine Vision Toolbox for MATLAB
R©

165 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘edgecolor’ the color of the circle’s edge, Matlab color spec
‘fillcolor’ the color of the circle’s interior, Matlab color spec
‘alpha’ transparency of the filled circle: 0=transparent, 1=solid.

plot ellipse
Draw an ellipse on the current plot

plot ellipse(a, ls) draws an ellipse defined by X’AX = 0 on the current plot, centred at
the origin, with Matlab line style ls.

plot ellipse(a, C, ls) as above but centred at C=[X,Y]. current plot. If C=[X,Y,Z] the
ellipse is parallel to the XY plane but at height Z.

See also

plot circle

plot ellipse inv
Plot an ellipse

plot ellipse(a, xc, ls)

ls is the standard line styles.

plot homline
Draw a line in homogeneous form

H = plot homline(L, ls) draws a line in the current figure L.X = 0. The current axis
limits are used to determine the endpoints of the line. Matlab line specification ls can
be set.

The return argument is a vector of graphics handles for the lines.

Machine Vision Toolbox for MATLAB
R©

166 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

homline

plot point
point features

plot point(p, options) adds point markers to a plot, where p (2×N) and each column
is the point coordinate.

Options

‘textcolor’, colspec Specify color of text
‘textsize’, size Specify size of text
‘bold’ Text in bold font.
‘printf’, fmt, data Label points according to printf format string and corresponding element of data
‘sequence’ Label points sequentially

Additional options are passed through to PLOT for creating the marker.

Examples

Simple point plot

P = rand(2,4);
plot_point(P);

Plot points with markers

plot_point(P, ’*’);

Plot points with square markers and labels

plot_point(P, ’sequence’, ’s’);

Plot points with circles and annotations

data = [1 2 4 8];
plot_point(P, ’printf’, {’ P%d’, data}, ’o’);

See also

plot, text

Machine Vision Toolbox for MATLAB
R©

167 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

plot poly
Plot a polygon

plotpoly(p, options) plot a polygon defined by columns of p which can be 2 × N or
3×N .

options

‘fill’ the color of the circle’s interior, Matlab color spec
‘alpha’ transparency of the filled circle: 0=transparent, 1=solid.

See also

plot, patch, Polygon

plot sphere
Plot spheres

plot sphere(C, R, color) add spheres to the current figure. C is the centre of the sphere
and if its a 3×N matrix then N spheres are drawn with centres as per the columns. R
is the radius and color is a Matlab color spec, either a letter or 3-vector.

H = plot sphere(C, R, color) as above but returns the handle(s) for the spheres.

H = plot sphere(C, R, color, alpha) as above but alpha specifies the opacity of the
sphere were 0 is transparant and 1 is opaque. The default is 1.

Example

Create four spheres

plot_sphere(mkgrid(2, 1), .2, ’b’)

and now turn on a full lighting model

lighting gouraud
light

Machine Vision Toolbox for MATLAB
R©

168 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

NOTES

• The sphere is always added, irrespective of figure hold state.

• The number of vertices to draw the sphere is hardwired.

plotp
Plot trajectories

plotp(p) plots a set of points p, which by Toolbox convention are stored one per col-
umn. p can be N × 2 or N × 3. By default a linestyle of ‘bx’ is used.

plotp(p, ls) as above but the line style arguments ls are passed to plot.

See also

plot, plot2

Plucker
Plucker coordinate class

Concrete class to represent a line in Plucker coordinates.

Methods

line Return Plucker line coordinates (1× 6)
side Side operator

Operators

* Multiple Plucker matrix by a general matrix
— Side operator

Machine Vision Toolbox for MATLAB
R©

169 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• This is reference class object

• Link objects can be used in vectors and arrays

Plucker.Plucker
Create Plucker object

p = Plucker(p1, p2) create a Plucker object that represents the line joining the 3D
points p1 (3× 1) and p2 (3× 1).

Plucker.char
Convert to string

s = P.char() is a string showing Plucker parameters in a compact single line format.

See also

Plucker.display

Plucker.display
Display parameters

P.display() displays the Plucker parameters in compact single line format.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a Plucker object and the command has no trailing semicolon.

See also

Plucker.char

Machine Vision Toolbox for MATLAB
R©

170 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Plucker.line
Plucker liner coordinates

P.line() is a 6-vector representation of the Plucker coordinates of the line.

Plucker.mtimes
Plucker composition

P * M is the product of the Plucker matrix and M (4×N).

M * P is the product of M (N × 4) and the Plucker matrix.

Plucker.or
— P2 is the side operator which is zero whenever

the lines P1 and P2 intersect or are parallel.

Plucker.side
Side operator

SIDE(p1, p2) is the side operator which is zero whenever the lines p1 and p2 intersect
or are parallel.

pnmfilt
Pipe image through PNM utility

out = pnmfilt(cmd) runs the external program given by the string cmd and the output
(assumed to be PNM format) is returned as out.

out = pnmfilt(cmd, im) pipes the image im through the external program given by the
string cmd and the output is returned as out. The external program must accept and
return images in PNM format.

Machine Vision Toolbox for MATLAB
R©

171 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Examples

im = pnmfilt(’ppmforge -cloud’);
im = pnmfilt(’pnmrotate 30’, lena);

Notes

• Provides access to a large number of Unix command line utilities such as Im-
ageMagick and netpbm.

• The input image is passed as stdin, the output image is assumed to come from
stdout.

• MATLAB doesn’t support i/o to pipes so the image is written to a temporary file,
the command run to another temporary file, and that is read into MATLAB.

See also

pgmfilt, iread

PointFeature
PointCorner feature object

A superclass for image corner features.

Methods

plot Plot feature position
distance Descriptor distance
ncc Descriptor similarity
uv Return feature coordinate
display Display value
char Convert value to string

Properties

u horizontal coordinate
v vertical coordinate
strength feature strength
descriptor feature descriptor (vector)

Machine Vision Toolbox for MATLAB
R©

172 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Properties of a vector of PointFeature objects are returned as a vector. If F is a vec-
tor (N × 1) of PointFeature objects then F.u is a 2 × N matrix with each column the
corresponding point coordinate.

See also

ScalePointFeature, SurfPointFeature, SiftPointFeature

PointFeature.PointFeature
Create a point feature object

f = PointFeature() is a point feature object with null parameters.

f = PointFeature(u, v) is a point feature object with specified coordinates.

f = PointFeature(u, v, strength) as above but with specified strength.

PointFeature.char
Convert to string

s = F.char() is a compact string representation of the point feature. If F is a vector then
the string has multiple lines, one per element.

PointFeature.display
Display value

F.display() displays a compact human-readable representation of the feature. If F is a
vector then the elements are printed one per line.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a PointFeature object and the command has no trailing semicolon.

See also

PointFeature.char

Machine Vision Toolbox for MATLAB
R©

173 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

PointFeature.distance
Distance between feature descriptors

d = F.distance(f1) is the distance between feature descriptors, the norm of the Eu-
clidean distance.

If F is a vector then d is a vector whose elements are the distance between the corre-
sponding element of F and f1.

PointFeature.match
Match point features

m = F.match(f2, options) is a vector of FeatureMatch objects that describe candidate
matches between the two vectors of point features F and f2.

[m,C] = F.match(f2, options) as above but returns a correspodence matrix where each
row contains the indices of corresponding features in F and f2 respectively.

Options

‘thresh’, T match threshold (default 0.05)
‘median’ Threshold at the median distance

See also

FeatureMatch

PointFeature.ncc
Feature descriptor similarity

s = F.ncc(f1) is the similarty between feature descriptors which is a scalar in the interval
-1 to 1, where 1 is perfect match.

If F is a vector then D is a vector whose elements are the distance between the corre-
sponding element of F and f1.

Machine Vision Toolbox for MATLAB
R©

174 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

PointFeature.plot
Plot feature

F.plot() overlay a marker at the feature position.

F.plot(ls) as above but the optional line style arguments ls are passed to plot.

If F is a vector then each element is plotted.

polydiff
pd = polydiff(p)

Return the coefficients of the derivative of polynomial p

Polygon
Polygon class

A general class for manipulating polygons and vectors of polygons.

Methods

plot plot polygon
area Area of polygon
moments Moments of polygon
centroid Centroid of polygon
perimeter Perimter of polygon
transform Transform polygon
inside Test if points are inside polygon
intersection Intersection of two polygons
difference Difference of two polygons
union Union of two polygons
xor Exclusive or of two polygons
display print the polygon in human readable form
char convert the polgyon to human readable string

Machine Vision Toolbox for MATLAB
R©

175 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Properties

vertices List of polygon vertices, one per column
extent Bounding box [minx maxx; miny maxy]
n Number of vertices

Notes

• This is reference class object

• Polygon objects can be used in vectors and arrays

Acknowledgement

The methods inside, intersection, difference, union, and xor are based on code written
by:

Kirill K. Pankratov, kirill@plume.mit.edu, http://puddle.mit.edu/ glenn/kirill/saga.html

and require a licence. However the author does not respond to email regarding the
licence, so use with care, and modify with acknowledgement.

Polygon.Polygon
Polygon class constructor

p = Polygon(v) is a polygon with vertices given by v, one column per vertex.

p = Polygon(C, wh) is a rectangle centred at C with dimensions wh=[WIDTH, HEIGHT].

Polygon.area
Area of polygon

a = P.area() is the area of the polygon.

Polygon.centroid
Centroid of polygon

x = P.centroid() is the centroid of the polygon.

Machine Vision Toolbox for MATLAB
R©

176 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Polygon.char
String representation

s = P.char() is a compact representation of the polgyon in human readable form.

Polygon.difference
Difference of polygons

d = P.difference(q) is polygon P minus polygon q.

Notes

• If polygons P and q are not intersecting, returns coordinates of P.

• If the result d is not simply connected or consists of several polygons, resulting
vertex list will contain NaNs.

Polygon.display
Display polygon

P.display() displays the polygon in a compact human readable form.

See also

Polygon.char

Polygon.inside
Test if points are inside polygon

in = p.inside(p) tests if points given by columns of p are inside the polygon. The
corresponding elements of in are either true or false.

Machine Vision Toolbox for MATLAB
R©

177 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Polygon.intersect
Intersection of polygon with list of polygons

i = P.intersect(plist) indicates whether or not the Polygon P intersects with

i(j) = 1 if p intersects polylist(j), else 0.

Polygon.intersect line
Intersection of polygon and line segment

i = P.intersect line(L) is the intersection points of a polygon P with the line segment
L=[x1 x2; y1 y2]. i is an N × 2 matrix with one column per intersection, each column
is [x y]’.

Polygon.intersection
Intersection of polygons

i = P.intersection(q) is a Polygon representing the intersection of polygons P and q.

Notes

• If these polygons are not intersecting, returns empty polygon.

• If intersection consist of several disjoint polygons (for non-convex P or q) then
vertices of i is the concatenation of the vertices of these polygons.

Polygon.linechk
Input checking for line segments.

Polygon.moments
Moments of polygon

a = P.moments(p, q) is the pq’th moment of the polygon.

Machine Vision Toolbox for MATLAB
R©

178 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

mpq poly

Polygon.perimeter
Perimeter of polygon

L = P.perimeter() is the perimeter of the polygon.

Polygon.plot
Plot polygon

P.plot() plot the polygon.

P.plot(ls) as above but pass the arguments ls to plot.

Polygon.transform
Transformation of polygon vertices

p2 = P.transform(T) is a new Polygon object whose vertices have been transfored by
the 3× 3 homgoeneous transformation T.

Polygon.union
Union of polygons

i = P.union(q) is a Polygon representing the union of polygons P and q.

Notes

• If these polygons are not intersecting, returns a polygon with vertices of both
polygons separated by NaNs.

• If the result P is not simply connected (such as a polygon with a “hole”) the re-
sulting contour consist of counter- clockwise “outer boundary” and one or more
clock-wise “inner boundaries” around “holes”.

Machine Vision Toolbox for MATLAB
R©

179 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Polygon.xor
Exclusive or of polygons

i = P.union(q) is a Polygon representing the union of polygons P and q.

Notes

• If these polygons are not intersecting, returns a polygon with vertices of both
polygons separated by NaNs.

• If the result P is not simply connected (such as a polygon with a “hole”) the re-
sulting contour consist of counter- clockwise “outer boundary” and one or more
clock-wise “inner boundaries” around “holes”.

radgrad
Radial gradient

[gr,gt] = radgrad(im) is the radial and tangential gradient of the image im. At each
pixel the image gradient vector is resolved into the radial and tangential directions.

[gr,gt] = radgrad(im, centre) as above but the centre of the image is specified as
centre=[X,Y] rather than the centre pixel of im.

radgrad(im) as above but the result is displayed graphically.

See also

isobel

randinit
Reset random number generator

RANDINIT reset the defaul random number stream.

Machine Vision Toolbox for MATLAB
R©

180 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

randstream

ransac
Random sample and consensus

m = ransac(func, x, T, options) is the ransac algorithm that robustly fits data x to
the model represented by the function func. ransac classifies Points that support the
model as inliers and those that do not as outliers.

x typically contains corresponding point data, one column per point pair. ransac de-
termines the subset of points (inliers) that best fit the model described by the function
func and the parameter m. T is a threshold on how well a point fits the estimated, if
the fit residual is aboe the the threshold the point is considered an outlier.

[m,in] = ransac(func, x, T, options) as above but returns the vector in of column
indices of x that describe the inlier point set.

[m,in,resid] = ransac(func, x, T, options) as above but returns the final residual of
applying func to the inlier set.

Options

‘maxTrials’, N maximum number of iterations (default 2000)
‘maxDataTrials’, N maximum number of attempts to select a non-degenerate data set (default 100)

Model function

out = func(R) is the function passed to RANSAC and it must accept a single argument
R which is a structure:

R.cmd the operation to perform which is either (string)
R.debug display what’s going on (logical)
R.x data to work on, N point pairs (6×N)
R.t threshold (1× 1)
R.theta estimated quantity to test (3× 3)
R.misc private data (cell array)

The function return value is also a structure:

Machine Vision Toolbox for MATLAB
R©

181 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

out.s sample size (1× 1)
out.x conditioned data (2D ×N)
out.misc private data (cell array)
out.inlier list of inliers (1× m)
out.valid if data is valid for estimation (logical)
out.theta estimated quantity (3× 3)
out.resid model fit residual (1× 1)

The values of R.cmd are:

‘size’ out.s is the minimum number of points required to compute an estimate to out.s
‘condition’ out.x = CONDITION(R.x) condition the point data
‘decondition’ out.theta = DECONDITION(R.theta) decondition the estimated model data
‘valid’ out.valid is true if a set of points is not degenerate, that is they will produce a model.

This is used to discard random samples that do not result in useful models.
‘estimate’ [out.theta,out.resid] = EST(R.x) returns the best fit model and residual for the subset

of points R.x. If this function cannot fit a model then out.theta = []. If multiple models
are found out.theta is a cell array.

‘error’ [out.inlier,out.theta] = ERR(R.theta,R.x,T) evaluates the distance from the model(s)
R.theta to the points R.x and returns the best model out.theta and the subset of R.x
that best supports (most inliers) that model.

Notes

• For some algorithms (eg. fundamental matrix) it is necessary to condition the
data to improve the accuracy of model estimation. For efficiency the data is
conditioned once, and the data transform parameters are kept in the .misc ele-
ment. The inverse conditioning operation is applied to the model to transform
the estimate based on conditioned data to a model applicable to the original data.

• The functions FMATRIX and HOMOG are written so as to be callable from
RANSAC, that is, they detect a structure argument.

References

• m.A. Fishler and R.C. Boles. ”Random sample concensus: A paradigm for
model fitting with applications to image analysis and automated cartography”.
Comm. Assoc. Comp, Mach., Vol 24, No 6, pp 381-395, 1981

• Richard Hartley and Andrew Zisserman. ”Multiple View Geometry in Computer
Vision”. pp 101-113. Cambridge University Press, 2001

Author

Peter Kovesi School of Computer Science & Software Engineering The University of
Western Australia pk at csse uwa edu au http://www.csse.uwa.edu.au/ pk

Machine Vision Toolbox for MATLAB
R©

182 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

fmatrix, homography

Ray3D
Ray in 3D space

This object represents a ray in 3D space, defined by a point on the ray and a direction
unit-vector.

Methods

intersect Intersection of ray with plane or ray
closest Closest distance between point and ray
char Ray parameters as human readable string
display Display ray parameters in human readable form

Properties

P0 A point on the ray (3× 1)
d Direction of the ray, unit vector (3× 1)

Notes

• Ray3D objects can be used in vectors and arrays

Ray3D.Ray3D
Ray constructor

R = Ray3D(p0, d) is a new Ray3D object defined by a point on the ray p0 and a
direction vector d.

Machine Vision Toolbox for MATLAB
R©

183 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Ray3D.char
Convert to string

s = R.char() is a compact string representation of the Ray3D’s value. If R is a vector
then the string has multiple lines, one per element.

Ray3D.closest
Closest distance between point and ray

x = R.closest(p) is the point on the ray R closest to the point p.

[x,E] = R.closest(p) as above but also returns the distance E between x and p.

Ray3D.display
Display value

R.display() displays a compact human-readable representation of the Ray3D’s value.
If R is a vector then the elements are printed one per line.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a Ray3D object and the command has no trailing semicolon.

See also

Ray3D.char

Ray3D.intersect
Intersetion of ray with line or plane

x = R.intersect(r2) is the point on R that is closest to the ray r2. If R is a vector then
then x has multiple columns, corresponding to the intersection of R(i) with r2.

[x,E] = R.intersect(r2) as above but also returns the closest distance between the rays.

Machine Vision Toolbox for MATLAB
R©

184 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

x = R.intersect(p) returns the point of intersection between the ray R and the plane
p=(a,b,c,d) where aX + bY + cZ + d = 0. If R is a vector then x has multiple columns,
corresponding to the intersection of R(i) with p.

RegionFeature
Region feature class

This class represents a region feature.

Methods

boundary Return the boundary as a list
box Return the bounding box
plot Plot the centroid
plot boundary Plot the boundary
plot box Plot the bounding box
plot ellipse Plot the equivalent ellipse
display Display value
char Convert value to string

Machine Vision Toolbox for MATLAB
R©

185 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Properties

uc centroid, horizontal coordinate
vc centroid, vertical coordinate
p centroid (uc, vc)
umin bounding box, minimum horizontal coordinate
umax bounding box, maximum horizontal coordinate
vmin bounding box, minimum vertical coordinate
vmax bounding box, maximum vertical coordinate
area the number of pixels
class the value of the pixels forming this region
label the label assigned to this region
children a list of indices of features that are children of this feature
edgepoint coordinate of a point on the perimeter
edge a list of edge points 2×N matrix
perimeter edge length (pixels)
touch true if region touches edge of the image
a major axis length of equivalent ellipse
b minor axis length of equivalent ellipse
theta angle of major ellipse axis to horizontal axis
shape aspect ratio b/a (always <= 1.0)
circularity 1 for a circle, less for other shapes
moments a structure containing moments of order 0 to 2
bbox the bounding box, 2× 2 matrix [umin umax; vmin vmax]

Note

• Properties uc, vc, p, class, label, touch, theta, shape, circularity, perimeter can be
referenced from a vector of RegionFeature objects and return a vector of values
(not a list).

• RegionFeature is a reference object.

• RegionFeature objects can be used in vectors and arrays

• This class behaves differently to LineFeature and PointFeature when getting
properties of a vector of RegionFeature objects. For example R.u will be a
list not a vector.

See also

iblobs, imoments

Machine Vision Toolbox for MATLAB
R©

186 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

RegionFeature.RegionFeature
Create a region feature object

R = RegionFeature() is a region feature object with null parameters.

RegionFeature.boundary
Boundary in polar form

[d,th] = R.boundary() is a polar representation of the boundary with respect to the
centroid. d(i) and th(i) are the distance to the boundary point and the angle respec-
tively. These vectors have 400 elements irrespective of region size.

RegionFeature.box
Return bounding box

b = R.box() is the bounding box in standard Toolbox form [xmin,xmax; ymin, ymax].

RegionFeature.char
Convert to string

s = R.char() is a compact string representation of the region feature. If R is a vector
then the string has multiple lines, one per element.

RegionFeature.display
Display value

R.display() is a compact string representation of the region feature. If R is a vector
then the elements are printed one per line.

Notes

• this method is invoked implicitly at the command line when the result of an
expression is a RegionFeature object and the command has no trailing semicolon.

Machine Vision Toolbox for MATLAB
R©

187 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

RegionFeature.char

RegionFeature.plot
Plot centroid

R.plot() overlay the centroid on current plot. It is indicated with overlaid o- and x-
markers.

R.plot(ls) as above but the optional line style arguments ls are passed to plot.

If R is a vector then each element is plotted.

RegionFeature.plot boundary
plot boundary

R.plot boundary() overlay perimeter points on current plot.

R.plot boundary(ls) as above but the optional line style arguments ls are passed to
plot.

Notes

• If R is a vector then each element is plotted.

See also

boundmatch

RegionFeature.plot box
Plot bounding box

R.plot box() overlay the the bounding box of the region on current plot.

R.plot box(ls) as above but the optional line style arguments ls are passed to plot.

If R is a vector then each element is plotted.

Machine Vision Toolbox for MATLAB
R©

188 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

RegionFeature.plot ellipse
Plot equivalent ellipse

R.plot ellipse() overlay the the equivalent ellipse of the region on current plot.

R.plot ellipse(ls) as above but the optional line style arguments ls are passed to plot.

If R is a vector then each element is plotted.

rg addticks
Label spectral locus

rg addticks() adds wavelength ticks to the spectral locus.

See also

xycolourspace

rgb2xyz
RGB to XYZ color space

[x, y, z] = rgb2xyz(r, g, b) xyz = rgb2xyz(rgb)

convert (R,g,b) coordinates to (X,Y,Z) color space. If RGB (or R, g, b) have more
than one row, then computation is

done row wise.

SEE ALSO: ccxyz cmfxyz

Machine Vision Toolbox for MATLAB
R©

189 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

rluminos
Relative photopic luminosity function

p = rluminos(lambda) is the relative photopic luminosity function for the wavelengths
in lambda [m]. If lambda is a vector (N×1), then p (N×1) is a vector whose elements
are the luminosity at the corresponding elements of lambda.

Relative luminosity lies in the interval 0 to 1 which indicate the intensity with which
wavelengths are perceived by the light-adapted human eye.

References

• Robotics, Vision & Control, Section 10.1, p. Corke, Springer 2011.

See also

luminos

sad
Sum of absolute differences

m = sad(i1, i2) is the sum of absolute differences between the two equally sized image
patches i1 and i2. The result m is a scalar that indicates image similarity, a value of
0 indicates identical pixel patterns and is increasingly positive as image dissimilarity
increases.

See also

zsad, ssd, ncc, isimilarity

ScalePointFeature
ScalePointCorner feature object

A subclass of PointFeature for features with scale.

Machine Vision Toolbox for MATLAB
R©

190 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

plot Plot feature position
plot scale Plot feature scale
distance Descriptor distance
ncc Descriptor similarity
uv Return feature coordinate
display Display value
char Convert value to string

Properties

u horizontal coordinate
v vertical coordinate
strength feature strength
scale feature scale
descriptor feature descriptor (vector)

Properties of a vector of ScalePointFeature objects are returned as a vector. If F is a
vector (N × 1) of ScalePointFeature objects then F.u is a 2 × N matrix with each
column the corresponding point coordinate.

See also

PointFeature, SurfPointFeature, SiftPointFeature

ScalePointFeature.ScalePointFeature
Create a scale point feature object

f = ScalePointFeature() is a point feature object with null parameters.

f = ScalePointFeature(u, v) is a point feature object with specified coordinates.

f = ScalePointFeature(u, v, strength) as above but with specified strength.

f = ScalePointFeature(u, v, strength, scale) as above but with specified feature scale.

ScalePointFeature.plot scale
Plot feature scale

F.plot scale(options) overlay a marker at the feature position.

Machine Vision Toolbox for MATLAB
R©

191 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

F.plot scale(options, ls) as above but the optional line style arguments ls are passed to
plot.

If F is a vector then each element is plotted.

Options

‘circle’ Indicate scale by a circle (default)
‘disk’ Indicate scale by a translucent disk
‘color’, C Color of circle or disk (default green)
‘alpha’, A Transparency of disk, 1=opaque, 0=transparent (default 0.2)

SiftPointFeature
SIFT point corner feature object

A subclass of PointFeature for SIFT features.

Methods

plot Plot feature position
plot scale Plot feature scale
distance Descriptor distance
match Match features
ncc Descriptor similarity
uv Return feature coordinate
display Display value
char Convert value to string

Properties

u horizontal coordinate
v vertical coordinate
strength feature strength
theta feature orientation [rad]
scale feature scale
descriptor feature descriptor (vector)
image id index of image containing feature

Properties of a vector of SiftCornerFeature objects are returned as a vector. If F is a
vector (N×1) of SiftCornerFeature objects then F.u is a 2×N matrix with each column
the corresponding u coordinate.

Machine Vision Toolbox for MATLAB
R©

192 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• SiftCornerFeature is a reference object.

• SiftCornerFeature objects can be used in vectors and arrays

• The SIFT algorithm is patented and not distributed with this toolbox. You can
download a SIFT implementation which this class can utilize. See README.SIFT.

References

“Distinctive image features from scale-invariant keypoints”, D.Lowe, Int. Journal on
Computer Vision, vol.60, pp.91-110, Nov. 2004.

See also

isift, PointFeature, ScalePointFeature, SurfPointFeature

SiftPointFeature.SiftPointFeature
Create a SIFT point feature object

f = SiftPointFeature() is a point feature object with null parameters.

f = PointFeature(u, v) is a point feature object with specified coordinates.

f = PointFeature(u, v, strength) as above but with specified strength.

See also

isift

SiftPointFeature.match
Match SIFT point features

m = F.match(f2, options) is a vector of FeatureMatch objects that describe candidate
matches between the two vectors of SIFT features F and f2. Correspondence is based
on descriptor similarity.

Machine Vision Toolbox for MATLAB
R©

193 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

SiftPointFeature.plot scale
Plot feature scale

F.plot scale(options) overlay a marker to indicate feature point position and scale.

F.plot scale(options, ls) as above but the optional line style arguments ls are passed to
plot.

If F is a vector then each element is plotted.

Options

‘circle’ Indicate scale by a circle (default)
‘clock’ Indicate scale by circle with one radial line for orientation
‘arrow’ Indicate scale and orientation by an arrow
‘disk’ Indicate scale by a translucent disk
‘color’, C Color of circle or disk (default green)
‘alpha’, A Transparency of disk, 1=opaque, 0=transparent (default 0.2)

SiftPointFeature.support
Support region of feature

out = F.support(im, w) is an image of the support region of the feature F, extracted
from the image im in which the feature appears. The support region is scaled to w×w
and rotated so that the feature’s orientation axis is upward.

out = F.support(images, w) as above but if the features were extracted from an image
sequence images then the feature is extracted from the appropriate image in the same
sequence.

[out,T] = F.support(images, w) as above but returns the pose of the feature as a 3× 3
homogeneous transform in SE(2) that comprises the feature position and orientation.

F.support(im, w) as above but the support region is displayed.

See also

SiftPointFeature

Machine Vision Toolbox for MATLAB
R©

194 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

SphericalCamera
Spherical camera class

A concrete class a spherical-projection camera.

Methods

project project world points

plot plot/return world point on image plane
hold control hold for image plane
ishold test figure hold for image plane
clf clear image plane
figure figure holding the image plane
mesh draw shape represented as a mesh
point draw homogeneous points on image plane
line draw homogeneous lines on image plane
plot camera draw camera

rpy set camera attitude
move copy of Camera after motion
centre get world coordinate of camera centre

delete object destructor
char convert camera parameters to string
display display camera parameters

Properties (read/write)

npix image dimensions in pixels (2× 1)
pp intrinsic: principal point (2× 1)
rho intrinsic: pixel dimensions (2× 1) in metres
T extrinsic: camera pose as homogeneous transformation

Properties (read only)

nu number of pixels in u-direction
nv number of pixels in v-direction

Note

• SphericalCamera is a reference object.

• SphericalCamera objects can be used in vectors and arrays

Machine Vision Toolbox for MATLAB
R©

195 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Camera

SphericalCamera.SphericalCamera
Create spherical projection camera object

C = SphericalCamera() creates a spherical projection camera with canonic parame-
ters: f=1 and name=’canonic’.

C = CentralCamera(options) as above but with specified parameters.

Options

‘name’, N Name of camera
‘pixel’, S Pixel size: S × S or S(1)xS(2)
‘pose’, T Pose of the camera as a homogeneous transformation

See also

Camera, CentralCamera, fisheyecamera, CatadioptricCamera

SphericalCamera.project
Project world points to image plane

pt = C.project(p, options) are the image plane coordinates for the world points p.
The columns of p (3 × N) are the world points and the columns of pt (2 × N) are
the corresponding spherical projection points, each column is phi (longitude) and theta
(colatitude).

Options

‘Tobj’, T Transform all points by the homogeneous transformation T before projecting them to
the camera image plane.

‘Tcam’, T Set the camera pose to the homogeneous transformation T before projecting points to
the camera image plane. Overrides the current camera pose C.T.

Machine Vision Toolbox for MATLAB
R©

196 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

SphericalCamera.plot

SphericalCamera.sph
Implement spherical IBVS for point features

results = sph(T) results = sph(T, params)

Simulate IBVS with for a square target comprising 4 points is placed in the world XY
plane. The camera/robot is initially at pose T and is driven to the orgin.

Two windows are shown and animated:

1. The camera view, showing the desired view (*) and the

current view (o)

2. The external view, showing the target points and the camera

The results structure contains time-history information about the image plane, cam-
era pose, error, Jacobian condition number, error norm, image plane size and desired
feature locations.

The params structure can be used to override simulation defaults by providing ele-
ments, defaults in parentheses:

target size - the side length of the target in world units (0.5)

target center - center of the target in world coords (0,0,2)

niter - the number of iterations to run the simulation (500)
eterm - a stopping criteria on feature error norm (0)
lambda - gain, can be scalar or diagonal 6× 6 matrix (0.01)
ci - camera intrinsic structure (camparam)
depth - depth of points to use for Jacobian, scalar for

all points, of 4-vector. If null take actual value
from simulation ([])

SEE ALSO: ibvsplot

SphericalCamera.sph2
Implement spherical IBVS for point features

results = sph(T) results = sph(T, params)

Machine Vision Toolbox for MATLAB
R©

197 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Simulate IBVS with for a square target comprising 4 points is placed in the world XY
plane. The camera/robot is initially at pose T and is driven to the orgin.

Two windows are shown and animated:

1. The camera view, showing the desired view (*) and the

current view (o)

2. The external view, showing the target points and the camera

The results structure contains time-history information about the image plane, cam-
era pose, error, Jacobian condition number, error norm, image plane size and desired
feature locations.

The params structure can be used to override simulation defaults by providing ele-
ments, defaults in parentheses:

target size - the side length of the target in world units (0.5)

target center - center of the target in world coords (0,0,3)

niter - the number of iterations to run the simulation (500)
eterm - a stopping criteria on feature error norm (0)
lambda - gain, can be scalar or diagonal 6× 6 matrix (0.01)
ci - camera intrinsic structure (camparam)
depth - depth of points to use for Jacobian, scalar for

all points, of 4-vector. If null take actual value
from simulation ([])

SEE ALSO: ibvsplot

SphericalCamera.visjac p
Visual motion Jacobian for point feature

J = C.visjac p(pt, z) is the image Jacobian (2N × 6) for the image plane points pt
(2 × N) described by phi (longitude) and theta (colatitude). The depth of the points
from the camera is given by z which is a scalar, for all points, or a vector (N × 1) for
each point.

The Jacobian gives the image-plane velocity in terms of camera spatial velocity.

Reference

“Spherical image-based visual servo and structure estimation”, P. I. Corke, in Proc.
IEEE Int. Conf. Robotics and Automation, (Anchorage), pp. 5550-5555, May 3-7
2010.

Machine Vision Toolbox for MATLAB
R©

198 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

CentralCamera.visjac p polar, CentralCamera.visjac l, CentralCamera.visjac e

ssd
Sum of squared differences

m = ssd(i1, i2) is the sum of squared differences between the two equally sized image
patches i1 and i2. The result m is a scalar that indicates image similarity, a value of
0 indicates identical pixel patterns and is increasingly positive as image dissimilarity
increases.

See also

zsdd, sad, ncc, isimilarity

stdisp
Display stereo pair

stdisp(L, R) displays the stereo image pair L and R in adjacent windows.

Two cross-hairs are created. Clicking a point in the left image positions black cross
hair at the same pixel coordinate in the right image. Clicking the corresponding world
point in the right image sets the green crosshair and displays the disparity [pixels].

See also

idisp, istereo

Machine Vision Toolbox for MATLAB
R©

199 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

SurfPointFeature
SURF point corner feature object

A subclass of PointFeature for SURF features.

Methods

plot Plot feature position
plot scale Plot feature scale
distance Descriptor distance
match Match features
ncc Descriptor similarity
uv Return feature coordinate
display Display value
char Convert value to string

Properties

u horizontal coordinate
v vertical coordinate
strength feature strength
scale feature scale
theta feature orientation [rad]
descriptor feature descriptor (vector)
image id index of image containing feature

Properties of a vector of SurfCornerFeature objects are returned as a vector. If F is a
vector (N × 1) of SurfCornerFeature objects then F.u is a 2 × N matrix with each
column the corresponding u coordinate.

Notes

• SurfCornerFeature is a reference object.

• SurfCornerFeature objects can be used in vectors and arrays

Reference

Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, “SURF: Speeded Up Ro-
bust Features”, Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3,
pp. 346–359, 2008

Machine Vision Toolbox for MATLAB
R©

200 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

isurf, PointFeature, ScalePointFeature, SiftPointFeature

SurfPointFeature.SurfPointFeature
Create a SURF point feature object

f = SurfPointFeature() is a point feature object with null parameters.

f = PointFeature(u, v) is a point feature object with specified coordinates.

f = PointFeature(u, v, strength) as above but with specified strength.

See also

isurf

SurfPointFeature.match
Match SURF point features

m = F.match(f2, options) is a vector of FeatureMatch objects that describe candidate
matches between the two vectors of SURF features F and f2. Correspondence is based
on descriptor similarity.

[m,C] = F.match(f2, options) as above but returns a correspodence matrix where each
row contains the indices of corresponding features in F and f2 respectively.

Options

‘thresh’, T match threshold (default 0.05)
‘median’ Threshold at the median distance

Notes

• for no threshold set to [].

See also

FeatureMatch

Machine Vision Toolbox for MATLAB
R©

201 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

SurfPointFeature.plot scale
Plot feature scale

F.plot scale(options) overlay a marker to indicate feature point position and scale.

F.plot scale(options, ls) as above but the optional line style arguments ls are passed to
plot.

If F is a vector then each element is plotted.

Options

‘circle’ Indicate scale by a circle (default)
‘clock’ Indicate scale by circle with one radial line for orientation
‘arrow’ Indicate scale and orientation by an arrow
‘disk’ Indicate scale by a translucent disk
‘color’, C Color of circle or disk (default green)
‘alpha’, A Transparency of disk, 1=opaque, 0=transparent (default 0.2)

SurfPointFeature.support
Support region of feature

out = F.support(im, w) is an image of the support region of the feature F, extracted
from the image im in which the feature appears. The support region is scaled to w×w
and rotated so that the feature’s orientation axis is upward.

out = F.support(images, w) as above but if the features were extracted from an image
sequence images then the feature is extracted from the appropriate image in the same
sequence.

[out,T] = F.support(images, w) as above but returns the pose of the feature as a 3× 3
homogeneous transform in SE(2) that comprises the feature position and orientation.

F.support(im, w) as above but the support region is displayed.

See also

SurfPointFeature

Machine Vision Toolbox for MATLAB
R©

202 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

tb optparse
Standard option parser for Toolbox functions

[optout,args] = tb optparse(opt, arglist) is a generalized option parser for Toolbox
functions. It supports options that have an assigned value, boolean or enumeration
types (string or int).

The software pattern is:

function(a, b, c, varargin)
opt.foo = true;
opt.bar = false;
opt.blah = [];
opt.choose = {’this’, ’that’, ’other’};
opt.select = {’#no’, ’#yes’};
opt = tb_optparse(opt, varargin);

Optional arguments to the function behave as follows:

‘foo’ sets opt.foo <- true
‘nobar’ sets opt.foo <- false
‘blah’, 3 sets opt.blah <- 3
‘blah’, x,y sets opt.blah <- x,y
‘that’ sets opt.choose <- ‘that’
‘yes’ sets opt.select <- 2 (the second element)

and can be given in any combination.

If neither of ‘this’, ‘that’ or ‘other’ are specified then opt.choose <- ‘this’. Alternatively
if:

opt.choose = {[], ’this’, ’that’, ’other’};

then if neither of ‘this’, ‘that’ or ‘other’ are specified then opt.choose <- []

If neither of ‘no’ or ‘yes’ are specified then opt.select <- 1.

Note:

• That the enumerator names must be distinct from the field names.

• That only one value can be assigned to a field, if multiple values

are required they must be converted to a cell array.

• To match an option that starts with a digit, prefix it with ‘d ’, so the field ‘d 3d’
matches the option ‘3d’.

The allowable options are specified by the names of the fields in the structure opt. By
default if an option is given that is not a field of opt an error is declared.

Sometimes it is useful to collect the unassigned options and this can be achieved using
a second output argument

[opt,arglist] = tb_optparse(opt, varargin);

which is a cell array of all unassigned arguments in the order given in varargin.

Machine Vision Toolbox for MATLAB
R©

203 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

The return structure is automatically populated with fields: verbose and debug. The
following options are automatically parsed:

‘verbose’ sets opt.verbose <- true
‘verbose=2’ sets opt.verbose <- 2 (very verbose)
‘verbose=3’ sets opt.verbose <- 3 (extremeley verbose)
‘verbose=4’ sets opt.verbose <- 4 (ridiculously verbose)
‘debug’, N sets opt.debug <- N
‘setopt’, S sets opt <- S
‘showopt’ displays opt and arglist

testpattern
Create test images

im = testpattern(type, w, args) creates a test pattern image. If w is a scalar the image
is w × w else w(2)xW(1). The image is specified by the string type and one or two
(type specific) arguments:

‘rampx’ intensity ramp from 0 to 1 in the x-direction. args is the number of cycles.
‘rampy’ intensity ramp from 0 to 1 in the y-direction. args is the number of cycles.
‘sinx’ sinusoidal intensity pattern (from -1 to 1) in the x-direction. args is the number of

cycles.
‘siny’ sinusoidal intensity pattern (from -1 to 1) in the y-direction. args is the number of

cycles.
‘dots’ binary dot pattern. args are dot pitch (distance between centres); dot diameter.
‘squares’ binary square pattern. args are pitch (distance between centres); square side length.
‘line’ a line. args are theta (rad), intercept.

Examples

A 256× 256 image with 2 cycles of a horizontal sawtooth intensity ramp:

testpattern(’rampx’, 256, 2);

A 256× 256 image with a grid of dots on 50 pixel centres and 20 pixels in diameter:

testpattern(’dots’, 256, 50, 25);

Notes

• With no output argument the testpattern in displayed using idisp.

Machine Vision Toolbox for MATLAB
R©

204 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

idisp

Tracker
Track points in image sequence

This class assigns each new feature a unique identifier and tracks it from frame to frame
until it is lost. A complete history of all tracks is maintained.

Methods

plot Plot all tracks
tracklengths Length of all tracks

Properties

track A vector of structures, one per active track.
history A vector of track history structures with elements id and uv which is the path of the

feature.

See also

PointFeature

Tracker.Tracker
Create new Tracker object

T = Tracker(im, C, options) is a new tracker object. im (H × W × S) is an image
sequence and C (S × 1) is a cell array of vectors of PointFeature subclass objects. The
elements of the cell array are the point features for the corresponding element of the
image sequence.

During operation the image sequence is animated and the point features are overlaid
along with annotation giving the unique identifier of the track.

Machine Vision Toolbox for MATLAB
R©

205 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘radius’, R Search radius for feature in next frame (default 20)
‘nslots’, N Maximum number of tracks (default 800)
‘thresh’, T Similarity threshold (default 0.8)
‘movie’, M Write the frames as images into the folder M as with sequential filenames.

Notes

• The ‘movie’ options saves frames as files NNNN.png.

• When using ‘movie’ option ensure that the window is fully visible.

• To convert frames to a movie use a command like:

ffmpeg -r 10 -i %04d.png out.avi

See also

PointFeature

Tracker.char
Convert to string

s = T.char() is a compact string representation of the Tracker parameters and status.

Tracker.display
Display value

T.display() displays a compact human-readable string representation of the Tracker
object

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a Tracker object and the command has no trailing semicolon.

See also

Tracker.char

Machine Vision Toolbox for MATLAB
R©

206 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Tracker.plot
Show feature trajectories

T.plot() overlays the tracks of all features on the current plot.

Tracker.tracklengths
Length of all tracks

T.tracklengths() is a vector containing the length of every track.

tristim2cc
Tristimulus to chromaticity coordinates

cc = tristim2cc(tri) is the chromaticity coordinate (1 × 2) corresponding to the tris-
timulus tri (1 × 3). If tri is RGB then cc is rg, if tri is XYZ then cc is xy. Multiple
tristimulus values can be given as rows of tri (N × 3) in which case the chromaticity
coordinates are the corresponding rows of cc (N × 2).

[c1,C2] = tristim2cc(tri) as above but the chromaticity coordinates are returned in
separate vectors, each N × 1.

out = tristim2cc(im) is the chromaticity coordinates corresponding to every pixel in
the tristimulus image im (H ×W × 3). out (H ×W × 2) has planes corresponding to
r and g, or x and y.

[o1,o2] = tristim2cc(im) as above but the chromaticity is returned as separate images
(H ×W).

upq
Central image moments

m = upq(im, p, q) is the PQ’th central moment of the image im. That is, the sum of
I(x,y).(x-x0)p.(y-y0)q where (x0,y0) is the centroid.

Machine Vision Toolbox for MATLAB
R©

207 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• The central moments are invariant to translation.

See also

upq poly, mpq, npq

upq poly
Central polygon moments

m = upq poly(v, p, q) is the PQ’th central moment of the polygon with vertices de-
scribed by the columns of v.

Notes

• The points must be sorted such that they follow the perimeter in sequence (counter-
clockwise).

• If the points are clockwise the moments will all be negated, so centroids will be
still be correct.

• If the first and last point in the list are the same, they are considered as a single
vertex.

• The central moments are invariant to translation.

See also

upq, mpq poly, npq poly

VideoCamera
Abstract class to read from local video camera

A concrete subclass of ImageSource that acquires images from a local camera using the
MATLAB Image Acquisition Toolbox (imaq). This Toolbox provides a multiplatform
interface to a range of cameras, and this class provides a simple wrapper.

Machine Vision Toolbox for MATLAB
R©

208 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

This class is not intended to be used directly, instead use the factory method Video
which will return an instance of this class if the Image Acquisition Toolbox is installed,
for example

vid = VideoCamera();

Methods

grab Aquire and return the next image
size Size of image
close Close the image source
char Convert the object parameters to human readable string

See also

videocamera, ImageSource, AxisWebCamera, Movie

VideoCamera fg
Class to read from local video camera

A concrete subclass of ImageSource that acquires images from a local camera using a
simple open-source frame grabber interface.

This class is not intended to be used directly, instead use the factory method Video-
Camera.which will return an instance of this class if the interface is supported on your
platform (Mac or Linux), for example

vid = VideoCamera.amera();

Methods

grab Aquire and return the next image
size Size of image
close Close the image source
char Convert the object parameters to human readable string

See also

ImageSource, AxisWebCamera, Movie

Machine Vision Toolbox for MATLAB
R©

209 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

VideoCamera fg.VideoCamera fg
Video camera constructor

V = VideoCamera fg.CAMERA, OPTIONS) is a VideoCamera fg.object that ac-
quires images from the local video camera specified by the string CAMERA.

If CAMERA is ‘?’ a list of available cameras, and their characteristics is displayed.

Options

‘uint8’ Return image with uint8 pixels (default)
‘float’ Return image with float pixels
‘double’ Return image with double precision pixels
‘grey’ Return greyscale image
‘gamma’, G Apply gamma correction with gamma=G
‘scale’, S Subsample the image by S in both directions.
‘resolution’, S Obtain an image of size S=[W H].
‘id’, I ID of camera

Notes:

• The specified ‘resolution’ must match one that the camera is capable of, other-
wise the result is not predictable.

VideoCamera fg.char
Convert to string

V.char() is a string representing the state of the camera object in human readable form.

VideoCamera fg.close
Close the image source

V.close() closes the connection to the camera.

VideoCamera fg.grab
Acquire image from the camera

im = V.grab() acquires an image from the camera.

Machine Vision Toolbox for MATLAB
R©

210 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• the function will block until the next frame is acquired.

VideoCamera IAT
Class to read from local video camera

A concrete subclass of ImageSource that acquires images from a local camera using the
MATLAB Image Acquisition Toolbox (imaq). This Toolbox provides a multiplatform
interface to a range of cameras, and this class provides a simple wrapper.

This class is not intended to be used directly, instead use the factory method Video
which will return an instance of this class if the Image Acquisition Toolbox is installed,
for example

vid = VideoCamera();

Methods

grab Aquire and return the next image
size Size of image
close Close the image source
char Convert the object parameters to human readable string

See also

videocamera, ImageSource, AxisWebCamera, Movie

VideoCamera IAT.VideoCamera IAT
Video camera constructor

v = Video IAT(camera, options) is a Video object that acquires images from the local
video camera specified by the string camera.

Machine Vision Toolbox for MATLAB
R©

211 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘uint8’ Return image with uint8 pixels (default)
‘float’ Return image with float pixels
‘double’ Return image with double precision pixels
‘grey’ Return greyscale image
‘gamma’, G Apply gamma correction with gamma=G
‘scale’, S Subsample the image by S in both directions.
‘resolution’, S Obtain an image of size S=[W H].
‘id’, I ID of camera

Notes:

• The specified ‘resolution’ must match one that the camera is capable of, other-
wise the result is not predictable.

VideoCamera IAT.char
Convert to string

V.char() is a string representing the state of the camera object in human readable form.

VideoCamera IAT.close
Close the image source

V.close() closes the connection to the camera.

VideoCamera IAT.grab
Acquire image from the camera

im = V.grab() acquires an image from the camera.

Notes

• the function will block until the next frame is acquired.

Machine Vision Toolbox for MATLAB
R©

212 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

VideoCamera IAT.list
available adaptors and cameras

VideoCamera IAT.preview
Control image preview

V.preview(true) enables camera preview in a separate window

xaxis
Set X-axis scaling

xaxis(max) set x-axis scaling from 0 to max.

xaxis(min, max) set x-axis scaling from min to max.

xaxis([min max]) as above.

xaxis restore automatic scaling for x-axis.

xycolorspace
Display spectral locus

xycolorspace() display a fully colored spectral locus in terms of CIE x and y coordi-
nates.

xycolorspace(p) as above but plot the points whose xy-chromaticity is given by the
columns of p.

[im,ax,ay] = xycolorspace() as above returns the spectral locus as an image im, with
corresponding x- and y-axis coordinates ax and ay respectively.

Notes

• The colors shown within the locus only approximate the true colors, due to the
gamut of the display device.

Machine Vision Toolbox for MATLAB
R©

213 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

See also

rg addticks

xyzlabel
Label X, Y and Z axes

XYZLABEL label the x-, y- and z-axes with ‘X’, ‘Y’, and ‘Z’ respectiveley

yaxis
Y-axis scaling

yayis(max) yayis(min, max)

YAXIS restore automatic scaling for this axis

YUV
Class to read YUV4MPEG file

A concrete subclass of ImageSource that returns images from a YUV4MPEG format
uncompressed video file.

Methods

grab Aquire and return the next image
size Size of image
close Close the image source
char Convert the object parameters to human readable string

Machine Vision Toolbox for MATLAB
R©

214 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

Properties

curFrame The index of the frame just read

See also

ImageSource, Video

SEE ALSO: Video

YUV.YUV
YUV4MPEG sequence constructor

y = YUV(file, options) is a YUV4MPEG object that returns frames from the yuv4mpeg
format file file. This file contains uncompressed color images in 4:2:0 format, with a
full resolution luminance plane followed by U and V planes at half resolution both
directions.

Options

‘uint8’ Return image with uint8 pixels (default)
‘float’ Return image with float pixels
‘double’ Return image with double precision pixels
‘grey’ Return greyscale image
‘gamma’, G Apply gamma correction with gamma=G
‘scale’, S Subsample the image by S in both directions
‘skip’, S Read every S’th frame from the movie

YUV.char
Convert to string

M.char() is a string representing the state of the movie object in human readable form.

YUV.close
Close the image source

M.close() closes the connection to the movie.

Machine Vision Toolbox for MATLAB
R©

215 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

YUV.grab
Acquire next frame from movie

im = Y.grab(options) is the next frame from the file.

[y,u,v] = y.grab(options) is the next frame from the file

Options

‘skip’, S Skip frames, and return current+S frame (default 1)
‘rgb’ Return as an RGB image, y image is downsized by two (default).
‘rgb2’ Return as an RGB image, u and v images are upsized by two.
‘yuv’ Return y, u and v images.

Notes

• If no output argument given the image is displayed using IDISP.

• For the ‘yuv’ option three output arguments must be given.

zcross
Zero-crossing detector

iz = zcross(im) is a binary image with pixels set where the corresponding pixels in the
signed image im have a zero crossing, a positive pixel adjacent to a negative pixel.

Notes

• Can be used in association with a Lapalacian of Gaussian image to determine
edges.

See also

ilog

Machine Vision Toolbox for MATLAB
R©

216 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

zncc
Normalized cross correlation

m = zncc(i1, i2) is the zero-mean normalized cross-correlation between the two equally
sized image patches i1 and i2. The result m is a scalar in the interval -1 to 1 that
indicates similarity. A value of 1 indicates identical pixel patterns.

Notes

• The zncc similarity measure is invariant to affine changes in image intensity
(brightness offset and scale).

See also

ncc, sad, ssd, isimilarity

zsad
Sum of absolute differences

m = zsad(i1, i2) is the zero-mean sum of absolute differences between the two equally
sized image patches i1 and i2. The result m is a scalar that indicates image similarity,
a value of 0 indicates identical pixel patterns and is increasingly positive as image
dissimilarity increases.

Notes

• The zsad similarity measure is invariant to changes in image brightness offset.

See also

sad, ssd, ncc, isimilarity

Machine Vision Toolbox for MATLAB
R©

217 Copyright c©Peter Corke 2011

CHAPTER 2. FUNCTIONS AND CLASSES

zssd
Sum of squared differences

m = zssd(i1, i2) is the zero-mean sum of squared differences between the two equally
sized image patches i1 and i2. The result m is a scalar that indicates image similarity,
a value of 0 indicates identical pixel patterns and is increasingly positive as image
dissimilarity increases.

Notes

• The zssd similarity measure is invariant to changes in image brightness offset.

See also

sdd, sad, ncc, isimilarity

Machine Vision Toolbox for MATLAB
R©

218 Copyright c©Peter Corke 2011

	Introduction
	Introduction
	Support
	How to obtain the Toolbox
	Documentation

	MATLAB version issues
	Use in teaching
	Use in research
	Other toolboxes

	Acknowledgements

	Functions and classes
	about
	anaglyph
	angdiff
	AxisWebCamera
	BagOfWords
	blackbody
	boundmatch
	bresenham
	camcald
	Camera
	CatadioptricCamera
	ccdresponse
	ccxyz
	CentralCamera
	cie_primaries
	circle
	closest
	cmfrgb
	cmfxyz
	col2im
	colnorm
	colordistance
	colorize
	colorkmeans
	colorname
	colorseg
	colorspace
	diff2
	distance
	e2h
	EarthView
	edgelist
	epidist
	epiline
	FeatureMatch
	filt1d
	FishEyeCamera
	fmatrix
	gauss2d
	gaussfunc
	h2e
	hist2d
	hitormiss
	homline
	homography
	homtrans
	homwarp
	Hough
	humoments
	ianimate
	ibbox
	iblobs
	icanny
	iclose
	icolor
	iconcat
	iconv
	icorner
	icp
	idecimate
	idilate
	idisp
	idisplabel
	idouble
	iendpoint
	ierode
	igamma
	igraphseg
	ihist
	iint
	iisum
	ilabel
	iline
	im2col
	ImageSource
	imatch
	imeshgrid
	imoments
	imono
	imorph
	imser
	inormhist
	intgimage
	invcamcal
	iopen
	ipad
	ipaste
	ipixswitch
	iprofile
	ipyramid
	irank
	iread
	irectify
	ireplicate
	iroi
	irotate
	isamesize
	iscale
	iscalemax
	iscalespace
	iscolor
	isift
	isimilarity
	isize
	ismooth
	isobel
	istereo
	istretch
	isurf
	ithin
	ithresh
	itrim
	itriplepoint
	ivar
	iwindow
	kcircle
	kdgauss
	kdog
	kgauss
	klaplace
	klog
	kmeans
	ksobel
	ktriangle
	lambda2rg
	lambda2xy
	LineFeature
	loadspectrum
	luminos
	mkcube
	mkgrid
	mlabel
	morphdemo
	Movie
	mplot
	mpq
	mpq_poly
	mtools
	ncc
	niblack
	npq
	npq_poly
	numcols
	numrows
	otsu
	peak
	peak2
	PGraph
	plot2
	plot_arrow
	plot_box
	plot_circle
	plot_ellipse
	plot_ellipse_inv
	plot_homline
	plot_point
	plot_poly
	plot_sphere
	plotp
	Plucker
	pnmfilt
	PointFeature
	polydiff
	Polygon
	radgrad
	randinit
	ransac
	Ray3D
	RegionFeature
	rg_addticks
	rgb2xyz
	rluminos
	sad
	ScalePointFeature
	SiftPointFeature
	SphericalCamera
	ssd
	stdisp
	SurfPointFeature
	tb_optparse
	testpattern
	Tracker
	tristim2cc
	upq
	upq_poly
	VideoCamera
	VideoCamera_fg
	VideoCamera_IAT
	xaxis
	xycolorspace
	xyzlabel
	yaxis
	YUV
	zcross
	zncc
	zsad
	zssd

