Exercise 1

Find the current through the diode if $V_{S}=6 \mathrm{~V}$ and $R_{S}=20 \Omega$.

Exercise 1 - Solution

$$
i=\frac{V_{1}-0.7}{R_{3}}=\frac{5.3}{20}=265 \mathrm{~mA}
$$

Exercise 1 - DC Sweep

DC Transfer Characteristic

Exercise 1 - Analysis

DC Transfer Characteristic

From Excel:
Slope $g=0.04544$
$R_{\text {eff }}=1 / g=22 \Omega$
$R_{\text {diode }}=22-20=2 \Omega$
x-intercept $=0.60 \mathrm{~V}$

Note: if analysis is extended to $6 \mathrm{~V}, R_{\text {eff }}$ is 20.7 and x-intercept $=0.62 \mathrm{~V}$.

$$
i=\frac{V_{1}-0.62}{R_{e f f}}=\frac{5.38}{20.7}=260 \mathrm{~mA}
$$

Other Diodes

Exercise 2

Let $R_{1}=R_{3}=20 \Omega$ and $R_{2}=R_{4}=10 \Omega$
Let $V_{S}=3 \mathrm{~V}$

Find the current through the conducting diode(s)

Exercise 2 - (Neither?)

Neither diode conducts?

$$
\begin{gathered}
\dot{i}_{1}=\dot{i}_{4} \\
\frac{V_{S}-V_{X}}{R_{1}}=\frac{V_{X}+V_{S}}{R_{4}} \\
R_{4} V_{S}-R_{4} V_{X}=R_{1} V_{X}+R_{1} V_{S} \\
V_{X}=\frac{R_{4}-R_{1}}{R_{4}+R_{1}} V_{S} \\
V_{X}=-\frac{10}{30} \cdot 3=-1
\end{gathered}
$$

This implies first diode conducts and second one does not. See slide.

Exercise 2 Solution- both (1/2)

$$
\begin{aligned}
& V_{X}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}\right)=V_{S}\left(\frac{1}{R_{1}}-\frac{1}{R_{4}}\right)+0.7\left(\frac{1}{R_{3}}-\frac{1}{R_{2}}\right)
\end{aligned}
$$

Exercise 2 Solution - both (2/2)

$$
\begin{aligned}
& i_{1}+i_{2}=i_{3}+i_{4} \\
& i_{2}=-\frac{0.7+V_{X}}{R_{2}} \\
& i_{3}=\frac{V_{X}-0.7}{R_{3}} \\
& i_{2}>0 \text { and } i_{3}<0 \text { so second diode } \\
& \text { does not conduct. }
\end{aligned}
$$

Exercise 2 Solution (first)

Exercise 2 Multisim

Exercise 3

Find the current through the diode and the voltage on either side of the diode.

Exercise 3 Solution

$$
\mathrm{KVL} \quad V_{S}=i_{D} R_{1}+0.7+i_{D} R_{2}
$$

$$
\begin{gathered}
i_{D}=\frac{V_{S}-0.7}{R_{1}+R_{2}} \\
i_{D}=\frac{3-0.7}{30}=\frac{2.3}{30}=76.7 \mathrm{~mA} \\
V_{1}=3-10 \cdot i_{D}=2.23 \mathrm{~V} \\
V_{2}=20 \cdot i_{D}=1.53 \mathrm{~V}
\end{gathered}
$$

