sys1.m
demonstrate sysmatrix and conjugate calculations
Contents
define lens
% define lens (thickness, index, curvature, aperture height) clear all close all th=[0 3.0486 5.4981 1.0162 0.6215 4.6129 3.0486 0 ]; rn=[1 1.713 1 1.689 1 1 1.713 1]; ap=[0 9 9 7.5 7.5 0 9 9 0]; cv=[0 0.0458621 0.0039265 -0.0301655 0.0454845 0 0.0104227 -0.0406946]; lp = find(rn>1);
system matrix
% calculate system matrix
f = sysmatrix(cv,th,rn)
f = 0.8285 -0.0200 17.6707 0.7806
% determinant of matrix
det(f)
ans = 1
% effective focal length (from system matrix)
efl = -1/f(1,2)
efl = 50.0190
conjugates
Conjugates are calculated as distance from object conjugate to the first lens surface and from the last lens surface to the image conjugate.
% find focal plane (zero magnification)
bfd = conjugates(0,f)
bfd = -Inf 41.4387
% find principal planes (unit magnification)
pp = conjugates(1,f)
pp = -10.9727 -8.5803
% calculate effective focal length % (distance from principal plane to focal plane) efl = bfd - pp
efl = -Inf 50.0190
% calculate hiatus (distance between principal planes)
hiatus = sum(th) + sum(pp)
hiatus = -1.7070
% planes for 1:1 imaging ( m = -1)
s = conjugates(-1,f)
s = 89.0652 91.4577
draw lens
drawsys(ap,th,cv,lp); axis([-1 19 -10 10]);

show principal planes
drawsys(ap,th,cv,lp); hold on; % sth = sum(th); % front principal plane in red, rear principal plane in green plot(-[pp(1) pp(1)],[-5 5],'r--','LineWidth',2); plot(sth+[pp(2) pp(2)],[-5 5],'g--','LineWidth',2); axis([-1 19 -10 10]); hold off
